Книга 4. Розвиток атомної енергетики та об’єднаних енергосистем
3.3. Деякі основні напрями розвитку теорії і практики теплопередачі на сучасному етапі
З освоєнням нових наукоємких технологій розширюється і ускладнюється коло завдань з дослідження процесів теплопередачі.
Потребує подальшого розвитку теорія складного теплообміну, обумовленого перенесенням тепла конвекцією, випромінюванням і теплопровідністю, турбулентного перенесення тепла, маси і кількості руху в нестаціонарних умовах.
Порівняно новим напрямом в дослідженні завдань конвективного теплообміну є вирішення так званих спряжених задач, коли на відміну від традиційного вивчення теплообміну твердого тіла з потоком рідини розглядається взаємопов'язана задача перенесення тепла в рідинах і твердих тілах.
Такий підхід був застосований вперше в 70–80-х роках минулого століття. Наприклад, при конструюванні теплообмінного устаткування з розвиненою поверхнею (оребрена стінка) зазвичай застосовують інженерні методики теплового і гідравлічного розрахунку, засновані на усереднених по поверхні коефіцієнтах тепловіддачі та гідравлічних опорах, які, як правило, визначаються експериментальним шляхом. Підвищені вимоги до розробки сучасних теплообмінних пристроїв змушують знаходити і розвивати більш уточнені методики розрахунку теплообмінних процесів. Облік інтегральних характеристик течії і теплообміну, на які традиційно спираються інженерні методики, не дозволяє оптимально вибрати розміри оребрення і теплообмінника в цілому. Тому останніми роками розвиваються методи розрахунку теплообмінного устаткування з використанням локальних характеристик, адекватно відображаючих реальні умови течії і теплообміну. Такі характеристики можуть бути отримані при постановці та вирішенні спряжених задач.
У зв'язку з широким впровадженням кріогенної техніки істотно просунулися роботи з дослідження теплообміну випромінюванням при кріогенних температурах стосовно надпровідних пристроїв і кріостатів для створення ефективної вакуумно-порошкової багатошарової ізоляції. Тут розглядається комбінований радіаційно-конвективний теплообмін.
Розробляються уточнені, з використанням комп'ютерних програм методи аналізу теплообміну в топкових пристроях. Розвиваються розрахункові прийоми, які дозволяють отримати повнішу інформацію про тепловий стан топок, що дає можливість поліпшити їх конструктивні рішення і режимний характер роботи.
Проаналізовані нові явища при теплообміні: вільна конвекція у випадку нагріву зверху (вектори потоку тепла і сили гравітації збігаються), термоконвективні хвилі й т.ін. Актуальним залишається детальніше вивчення методів інтенсифікації теплообміну (додавання у потік рідини поверхнево-активних речовин, створення пульсацій рідини, вібрація поверхонь нагріву та ін.).
Розвиток теорії теплопередачі, розробка сучасних інженерних методів розрахунку теплообмінного устаткування залишаються актуальним завданням для переходу до нових наукоємких інноваційних технологій.
- Вступ
- ЧАСТИНА 1. Атомна енергетика
- Розділ 1. Розвиток атомної енергетики
- Розділ 2. Ядерні реактори
- Розділ 3. Ядерні енергетичні установки
- Розділ 4. Атомні електростанції
- Розділ 5. Паливні цикли атомної енергетики
- Розділ 6. Забезпечення паливом атомної енергетики
- Розділ 7. Перспективні напрямки розвитку реакторів та ядерного паливного циклу
- Розділ 8. Реактори – випалювачі високорадіотоксичних відходів переробки відпрацьованого палива АЕС
- Раздел 9. Можливий варіант розвитку ядерно-паливного циклу в Україні
- ЧАСТИНА 2. Об’єднані енергосистеми та енергоутворення
- Розділ 1. Процес об’єднання енергетичних систем: основні поняття й призначення
- Розділ 2. Міжсистемні зв’язки – засіб ефективного утворення енергооб’єднань
- Розділ 3. Об’єднана енергетична система України
- Розділ 4. Єдина енергетична система Російської Федерації
- Розділ 5. Транснаціональні й трансконтинентальні енергосистемні утворення
- Післямова
- Перелік скорочень
- Список використаної літератури
- Відомості про авторів