Книга 1. Від вогню та води до електрики
Розділ 7. Вугілля
Найбільш ефективними технологіями використання біомаси в біоенергетиці є пряме спалювання; піроліз; газифікація; анаеробна ферментація з утворенням метану; виробництво спиртів і масел для отримання моторного палива.
Технології використання біомаси постійно вдосконалюються, забезпечуючи отримання енергії в придатній для споживача формі й з максимально можливою ефективністю.
У загальному випадку енергія з органічних відходів отримується або фізичними, або хімічними чи мікробіологічними методами.
Фізичним методом енергію отримують шляхом спалювання органічних відходів.
Основою хімічного метода є використання процесів піролізу і газифікації.
Найрозповсюдженішим у світі є мікробіологічний метод безвідходного виробництва – отримання біогазу анаеробним зброджуванням. Дуже цінним продуктом виробництва біогазу є отримання високоякісних органічних добрив.
Класифікація технологій з поетапним перетворенням біомаси в енергетичні продукти представлена на мал. 2.19.
Пряме спалювання біомаси в атмосфері повітря або кисню – один з найбільш старих методів отримання теплової енергії. Однак існує ряд проблем при його практичному використанні, головною з них є досягнення найбільш повного згоряння палива, в результаті якого утворюються діоксин вуглецю і вода, що не завдає шкоди довкіллю. До технічних пристроїв, які використовуються для прямого спалювання біомаси, відносяться печі, топки, камери згоряння. Біомаса може використовуватися шляхом прямого спалювання в енергетичних установках у факелі, киплячому або ущільненому шарі з подальшим отриманням теплової і електричної енергії. Основна промислова технологія цього напряму – пряме спалювання в котлі й генерація електроенергії в паротурбінній установці.
Піроліз біомаси – хімічне перетворення одних органічних сполук в інші під дією теплоти або так звана суха перегонка без доступу окислювачів (кисню, повітря). Розроблений ряд технологічних процесів піролізу біомаси, експлуатаційні умови кожного з них визначаються природою сировини, методами переробки і заданими продуктами виробництва. Характеристика продуктів піролізу залежить від типу сировини і умов проведення процесу. Основними продуктами піролізу можуть бути вуглиста речовина, паливна рідина, паливні гази, причому часто технологічний процес орієнтований на переважне отримання одного з продуктів піролізу.
Газифікація біомаси – це перетворення твердих відходів біомаси в горючі гази шляхом неповного їх окислення повітрям (киснем, водяною парою) при високій температурі. Газифікувати можна практично будьяке паливо, в результаті чого отримують генераторні гази, які мають значний діапазон використання – як паливо для отримання теплової енергії в побуті та різних процесах промисловості, в двигунах внутрішнього згоряння, як сировина для отримання водню, аміаку, метилового спирту і синтетичного рідкого палива. Не дивлячись на значні різновиди способів газифікації, всі вони характеризуються одними і тими ж реакціями (мал. 2.20).
Газифікатори мають різну продуктивність з різним виходом енергії в паливному газі. Низькокалорійний газ може бути отриманий газифікацією різних видів біомаси – органічних компонентів твердих міських відходів, відходів лісу, сільськогосподарських відходів.
Ефективним є використання установок газифікації біомаси на газотурбінних і парогазових електростанціях.
Анаеробна ферментація біомаси. У процесі анаеробної ферментації складні органічні речовини розкладаються на СО2 і СН4з утворенням біогазу у вигляді суміші вуглекислого газу і метану, причому на частку метану може припадати до 70%. Технологічний процес анаеробного зброджування біомаси відбувається без надходження кисню в спеціальних реакторах-метантенках, конструкція яких забезпечує максимальне виділення метану. Особливо важливим в процесі анаеробного зброджування є створення оптимальних технологічних умов в реакторіметантенку: температури, надходження кисню, достатньої концентрації живильних речовин, допустимого значення рН, відсутності або низької концентрації токсичних речовин.
Таблиця 2.4 Порівняльні енергетичні показники традиційних енергоносіїв і біогазу
Продукт |
Одиниці вимірювання |
Еквівалент 1 м3 неочищеного біогазу 23 МДж/м3 |
Еквівалент 1 м3 очищеного біогазу 35,2 МДж/м3 |
Електроенергія |
кВт·ч |
0,62 |
0,94 |
Природний газ |
м3 |
0,61 |
0,93 |
Вугілля |
кг |
0,82 |
1,25 |
Найбільш ефективними вважаються біореактори, що працюють в термофільному режимі 43–62°С. На таких установках з триденною ферментацією гною вихід біогазу складає 4,5 л на кожний літр корисного об’єму реактора.
Порівняльні енергетичні показники традиційних енергоносіїв і біогазу наведені в табл. 2.4.
Сучасні біогазові анаеробні установки складаються з таких основних систем:
• системи підготовки і подачі сировини в біореактор;
• біореактора (метантенка) із системою підтримання постійної температури та іншими комплектуючими пристроями;
• системи зберігання і використання біогазу;
• системи вивантаження і транспортування шламу.
Схема найпростішої біогазової анаеробної установки для індивідуального господарства зображена на мал. 2.21.
Використання біогазу забезпечує можливість отримання теплової і електричної енергії, що є особливо привабливим для фермерських господарств. При масовому розповсюдженню біогазових технологій в сільських регіонах можна досягнути значної економії органічного палива (мал. 2.22).
Становить інтерес вирощування і використання в метантенках водяної рослинної біомаси для отримання біогазу. Однією з найбільш продуктивних водоростей є бура водорость макроцистис, розповсюджена в прибережній зоні морів і океанів, врожайність якої складає 450–1200 т сирої маси є 1 га. З кожної тонни широко відомої хлорели можна отримати 22 кДж енергії. Високою врожайністю характеризуються морські водорості дуналіела, водяний гіацинт, червона водорость тощо.
Існує гібридна енергосистема «Біосоляр» – ТЕЦ, яка є замкненою для всіх біогенних елементів, окрім вуглецю, що спалюється (мал. 2.23).
Система «Біосоляр» являє собою комплекс з культивації мікроводоростей, з яких виділяються харчові й кормові добавки, а інше є одним з елементів наповнення метантенків. Для культивації мікроводоростей необхідний СО2, який подається до них після очищення в результаті спалювання біогазу в котлах ТЕЦ.
Для отримання біогазу використовуються також відходи тваринництва і рослинності. У схемі передбачене додаткове джерело у вигляді природного газу, який використовується в разі необхідності в зимовий період при відсутності рослинної біомаси.
У біоенергетиці України може бути використаний значний енергетичний потенціал біомаси, в тому числі існуючий в сільському господарстві надлишок соломи і стеблів сільськогосподарських рослин, що складають біля 20 млн. т, для опалювальних котелень, розташованих в сільській місцевості (споживаючих біля 2,9 млн. т у. п. за рік), а також для промислових енергетичних установок.
Ефективним шляхом є виробництво і використання біогазу при переробці рослинної і тваринної біомаси.
Іншим джерелом біомаси є звалища сміття. Потенціальні можливості отримання біогазу зі звалищ можуть складати 1,6 млн. т у. п. Сировиною, з якої можна отримати біогаз, можуть бути практично всі відходи, до складу яких входять органічні компоненти.
Розділ 6. Паливо як джерело вогню
7.1. Історія відкриття та використання викопного вугілля та його походження