Книга 3. Розвиток теплоенергетики та гідроенергетики
7.5. Зародження основ електродинаміки
Не менше ніж теплова і світлова, для природодослідників в XIX столітті становила інтерес і електродинамічна дія електричного струму, тобто способи прямого перетворення електричної енергії в роботу.
Раніше було показано, що соленоїд при проходженні через нього струму діє як магніт і притягується або відштовхується від полюсів іншого магніту. Легко припустити, що і два соленоїди, через які проходить струм, діятимуть один на одного подібно до двох магнітів. І, дійсно, таку взаємодію було встановлено і підтверджено дослідами Ампера в 1820 р.
Ампер довів існування взаємодії не тільки паралельних, але і довільно перехрещених провідників, через які проходить струм. При цьому вони чинять один на одного таку дію, що прагнуть стати паралельно один до одного, причому так, щоб струми в них мали однакові напрями.
Величина електродинамічної сили, з якою діють один на одного електричні провідники, залежить від їх взаємного положення, відстані між ними, а також від сили струму, який в них протікає. У загальному випадку ця сила пропорційна добутку обох струмів, що протікають в провідниках.
Ампер вивів теоретично свій основний електродинамічний закон тільки для двох елементів зі струмом, але не для замкнених контурів зі струмом. Першість в теоретичному визначенні електродинамічної сили струму в замкненому контурі належить Вільгельму Веберу.
Подальші досліди Вебера показали, що дія електродинамічної сили збільшується, якщо замість прямого провідника використовувати спіральне намотування. Цей ефект був використаний в конструкції першого приладу для вимірювання електродинамічної сили струму – електродинамометра. На мал. 7.11 показаний загальний вид електродинамометра для вимірювання слабких струмів, а на мал. 7.12 – загальний вид крутильного електродинамометра для вимірювання сильних струмів.
Вільгельм Едуард Вебер (1804–1891) – німецький фізик, член-кореспондент Берлінської академії наук. Його роботи присвячені електромагнетизму, акустиці, теплоті, молекулярній фізиці, земному магнетизму. У 1833 році побудував перший в Німеччині електромагнітний телеграф. Він розробив теорію електродинамічних явищ і встановив закон взаємодії рухомих зарядів (1848). У 1846 році вказав на зв'язок сили струму з густиною електричних зарядів і швидкістю їх впорядкованого переміщення. Винайшов ряд фізичних приладів, зокрема електродинамометр.
Мал. 7.11. Електродинамометр для вимірювання слабких струмів
Мал. 7.12. Крутильний електродинамометр для вимірювання сильних струмів
В ознаменування видатних заслуг Вебера його ім’ям була названа одиниця електромагнітного потоку.
Не заглиблюючись в подробиці конструкції електродинамометрів, необхідно відзначити, що вони були першими точними приладами для вимірювання електродинамічної сили переважно змінного струму, який одержав пізніше значно ширше розповсюдження, про що буде сказано нижче.
- Вступ
- ЧАСТИНА 1. Теплоенергетика
- Розділ 1. Основні поняття у теплоенергетиці
- Розділ 2. Парові та водогрійні котли
- 2.1. Загальні відомості, класифікація парових та водогрійних котлів
- 2.2. Органічне паливо та типи топкових пристроїв для його спалювання
- 2.3. Парові котли малої та середньої продуктивності
- 2.4. Парові енергетичні котли
- 2.5. Парові котли енергоблоків ТЕС
- 2.6. Котли-утилізатори й енерготехнологічні котли
- 2.7. Створення та удосконалення водогрійних котлів
- 2.8. Водогрійні котли малої потужності
- 2.9. Водогрійні котли для комунальної енергетики
- 2.10. Водогрійні котли для централізованого теплопостачання
- 2.11. Електрокотли
- 2.12. Сучасний стан та напрямки розвитку котлобудування
- 2.13. Стан котельного господарства в Україні та напрямки його модернізації
- Розділ 3. Парові та газові турбіни
- 3.1. Еволюція парових турбін та їх основні типи
- 3.2. Основні елементи сучасних парових турбін
- 3.3. Основи експлуатації парових турбін
- 3.4. Стан паротурбінного обладнання в Україні
- 3.5. Шляхи удосконалення конструкцій парових турбін у світі
- 3.6. Історія розвитку енергетичного газотурбобудування
- 3.7. Основні елементи енергетичних газотурбінних установок та їх призначення
- 3.8. Створення та розвиток парогазових й газопарових установок, їх класифікація
- 3.9. Сучасний стан стаціонарного енергетичного газотурбобудування та шляхи його розвитку
- Розділ 4. Теплові електростанції
- Розділ 5. Централізоване теплопостачання великих міст
- Розділ 6. Перспективи розвитку теплової енергетики
- ЧАСТИНА 2. Гідроенергетика
- Розділ 1. Спорудження перших гідроелектростанцій. Етапи розвитку гідроенергетики
- Розділ 2. Гідроенергетичні ресурси, їх використання. Принципові схеми, параметри, режими роботи ГЕС і ГАЕС
- 2.1. Енергія й потужність водотоків
- 2.2. Гідроенергетичні ресурси та їх використання
- 2.3. Регулювання річкового стоку
- 2.4. Принципові схеми використання гідравлічної енергії на ГЕС
- 2.5. Основні енергетичні параметри ГЕС
- 2.6. Принципові схеми роботи ГАЕС
- 2.7. Основні енергетичні параметри ГАЕС
- 2.8. Режим роботи ГЕС та ГАЕС в об’єднаних енергосистемах
- 2.9. Комплексне використання та охорона водних ресурсів
- Розділ 3. Каскади ГЕС. Територіально-виробничі комплекси та енергокомплекси
- Розділ 4. Основні типи, умови експлуатації, режими роботи ГЕС і ГАЕС
- Розділ 5. Технологічне устаткування ГЕС і ГАЕС
- Розділ 6. Перспективи розвитку гідроенергетики
- Післямова
- Перелік скорочень
- Список використаної літератури
- Відомості про авторів