Книга 3. Розвиток теплоенергетики та гідроенергетики
2.2. Гідроенергетичні ресурси та їх використання
Для оцінки потенційних гідроенергетичних ресурсів (без обліку втрат при перетворенні водної енергії в електричну) визначається валовий гідроенергетичний потенціал. Він характеризується середньобагаторічною потенційною енергією Епот і середньорічною потенційною потужністю Nпот, що розраховуються за вищенаведеними формулами.
Річна потенційна енергія, виходячи з 8760 годин використання за рік потенційної потужності, може визначатися за формулою
Епот= 8760 Nпот .
Валовий теоретичний гідроенергетичний потенціал річок світу оцінюється в 39100 млрд. кВт.год.
Технічний гідроенергетичний потенціал характеризує ту частину водної енергії, яку можна використати технічно.
При визначенні технічного гідроенергетичного потенціалу враховуються всі втрати, пов'язані з виробництвом електроенергії, включаючи неможливість повного використання стоку, що викликана недостатньою ємністю водоймищ і обмеженням потужності ГЕС, у зв'язку з обмеженим використанням верхових і низових ділянок річок з малою потенційною потужністю, втратами на випаровування з поверхні водоймищ та на фільтрацію з водоймищ, втратами напору й потужності в проточному тракті й енергетичному устаткуванні ГЕС.
Економічно ефективний гідроенергетичний потенціал визначає ту частину технічного потенціалу, яку в цей час економічно доцільно використовувати. Слід зазначити умовність визначення економічно ефективного потенціалу, тому що він базується на техніко-економічному порівнянні з альтернативними джерелами електроенергії, в якості яких виступають теплові електростанції, і не враховує досить повно ефективність комплексного використання водних ресурсів. Крім того, у зв'язку з ростом вартості органічного палива, а також збільшенням вартості будівництва ТЕС з урахуванням жорсткості вимог до охорони навколишнього середовища й іншим можна прогнозувати збільшення в перспективі економічно ефективного потенціалу, який буде наближатися до технічного гідроенергетичного потенціалу.Мал. 2.2. Розподіл економічно ефективного гідроенергетичного потенціалу та його використання на континентах
Таблиця 2.1. Дані про гідроенергетичний потенціал і його використання у країнах, які мають найбільші гідроенергетичні ресурси
Країна |
Гідроенергетичний потенціал, вироблення |
Освоєння гідроенергетичного потенціалу |
|||
Технічний, млрд. кВт·год |
Економічно ефективний, млрд. кВт·год |
Потужність, млн. кВт |
Виробництво |
||
млрд. кВт·год |
% від економічно ефективного |
||||
Китай |
2474 |
1750 |
171,0 |
684,0 |
39 |
Росія |
1670 |
852 |
49,7 |
180,0 |
21 |
Бразилія |
1300 |
763,5 |
84,0 |
365,0 |
48 |
Канада |
981 |
536 |
72,7 |
350,0 |
65 |
Республіка Конго |
774 |
419 |
2,5 |
7,2 |
2 |
Індія |
660 |
442 |
40,0 |
123,6 |
28 |
США |
528,5 |
376 |
78,2 |
308,8 (2000 р.) 270 (2008 р.) |
82 |
Таджикистан |
– |
263,5 |
4,0 |
16,1 |
6 |
Перу |
395 |
260 |
3,3 |
19,5 |
7 |
Венесуела |
260,7 |
100 |
14,6 |
83,0 |
83 |
Туреччина |
216 |
130 |
13,6 |
46,3 |
34 |
Глобальне потепління клімату на Землі, можливість якого обґрунтовується багатьма дослідженнями, може вплинути на стік річок і гідроенергетичні ресурси. Так, за наближеною оцінкою середньобагаторічне виробництво ГЕС у Росії може збільшитися на 12%.
Світовий технічний гідроенергетичний потенціал (на рівні 2008 р.) оцінюється в 14650 млрд. кВт·год, а економічно ефективний – у 8770 млрд. кВт·год. Розподіл економічного ефективного потенціалу та його використання на континентах на рівні 2000 р. наведено на мал. 2.2.
Незважаючи на різке підвищення вимог до охорони навколишнього середовища, за 25 років з 1975 до 2000 рр. світовий обсяг виробництва електроенергії на ГЕС виріс із 1165 до 2650 млрд. кВт·год і склав близько 19% світового виробництва електроенергії. При цьому використовується тільки третина економічно ефективного гідроенергетичного потенціалу. У всьому світі встановлена потужність ГЕС, що перебувають в експлуатації, у 2000 р. склала 670 млн. кВт, а до 2008 р. досягла 887 млн. кВт, а виробництво – 3350 млрд. кВт·год. Дані щодо гідроенергетичного потенціалу країн, що володіють найбільшими гідроенергетичними ресурсами, та його використання на рівні 2008 р. наведено в таблиці 2.1.
Повний обсяг усіх водоймищ у світі перевищив 6 тис. км3 (ресурси річкового стоку оцінюються в 37 тис.км3). На середні й великі водоймища об’ємом більше 100 млн. м3 припадає понад 95% сумарного об’єму всіх водоймищ, причому переважна більшість цих водоймищ мають ГЕС.
Гідроенергетичні ресурси не безмежні, й приходить розуміння, що вони таке ж національне багатство, як нафта, газ, вугілля, уран, на відміну від яких є відновлюваними ресурсами.
Найбільші ГЕС, що експлуатуються, мають встановлену потужність: «Три ущелини» (Китай) – 18,2 млн. кВт, Ітайпу (Бразилія – Парагвай) – 12,6 (14,0) млн.кВт, Guri (Венесуела) – 10,3 млн.кВт, Тукуру (Бразилія) – 7,2 млн.кВт, Гренд Кулі (США) – 6,5 млн.кВт, Саяно-Шушенська – 6,4 млн.кВт і Красноярська (Росія) – 6 млн.кВт, Черчилл-Фолс – 5,4 млн.кВт і Ла Гранд (Канада) – 5,3 млн.кВт.
Таблиця 2.2. Дані щодо гідроенергетичного потенціалу країн, що максимально його використовують (на рівні 2008 р.)
Країна |
Гідроенергетичний потенціал, виробництво, млрд. кВт·год |
Освоєння гідроенергетичного потенціалу |
|||
Технічний |
Економічно ефективний |
Потужність, млн. кВт |
Виробіток |
||
млрд. кВт·год |
% від економічно ефективного потенціалу |
||||
Європа |
|||||
Франція |
72 |
71,5 |
25,2 |
69,8 |
98 |
Швейцарія |
41 |
35,5 |
13,4 |
34,5 |
97 |
Італія |
69 |
54 |
17,5 |
51,6 |
96 |
Німеччина |
25 |
20 |
4,5 |
17,2 |
86 |
Фінляндія |
16,9 |
16,0 |
3,1 |
13,9 |
86 |
Швеція |
130 |
90 |
16,3 |
65,0 |
72 |
Австрія |
56,2 |
53,7 |
11,9 |
37,6 |
70 |
Азія |
|||||
Японія |
135,6 |
114,3 |
22,0 |
102,6 |
90 |
Північна та Центральна Америка |
|||||
США |
528,5 |
376 |
78,2 |
308,8 |
82 |
Мексика |
49,0 |
33 |
11,3 |
24,6 |
76 |
Канада |
981 |
536 |
72,7 |
350,0 |
65 |
Південна Америка |
|||||
Венесуела |
260,7 |
100 |
14,6 |
83,0 |
83 |
Парагвай |
85 |
68 |
8,4 |
54,2 |
79 |
Австралія та Океанія |
|||||
Австралія |
60 |
30 |
7,7 |
17,5 |
60 |
Аналізуючи світовий досвід розвитку енергетики, слід зазначити, що практично всі найбільш розвинені країни в першу чергу інтенсивно освоювали свої гідроенергетичні ресурси та досягли високого рівня їх використання (табл. 2.2). Так, гідроенергетичні ресурси в США використані на 82%, в Японії – на 90%, в Італії, у Франції, у Швейцарії – на 95–98%.
В Україні економічно ефективний гідроенергетичний потенціал використаний на 60%, а у Росії – на 20%.
У світі зберігається тенденція до постійного збільшення використання вічно відновлюваних гідроенергетичних ресурсів, особливо у слаборозвинених країнах і країнах, що розвиваються, розвиток енергетики в яких іде шляхом першочергового застосування саме гідроенергетичних ресурсів. При цьому будівництво ГЕС в основному переміщується в передгір'я й гірські райони, де їх негативний вплив на навколишнє середовище значно зменшується.
ГЕС Ітайпу. Загальний вигляд на водоскид
«Ітайпу» – одна з найбільших ГЕС світу на річці Парана, за 20 км до м. Фос-ду-Ігуасу (Foz do Iguacu) на кордоні Бразилії й Парагваю. За потужністю поступається лише ГЕС «Три ущелини» (Китай), проте на 2008 рік була найбільшою з виробництва електроенергії.
Вид на греблю ГЕС «Три ущелини»
ГЕС «Три ущелини» – найбільша за всю історію світової гідроенергетики. До складу споруд ГЕС входять: бетонна глуха гребля, приміщення ГЕС із 26 агрегатами, водоскидна гребля, 2 нитки шлюзів по 5 камер з натиском на кожну камеру 25,4 м, суднопідйомник. Повна та корисна місткість водосховища – 39,3 й 22, 1 млн. м3, його максимальна глибина – 175 м. Встановлена потужність ГЕС 18200 МВт.
- Вступ
- ЧАСТИНА 1. Теплоенергетика
- Розділ 1. Основні поняття у теплоенергетиці
- Розділ 2. Парові та водогрійні котли
- 2.1. Загальні відомості, класифікація парових та водогрійних котлів
- 2.2. Органічне паливо та типи топкових пристроїв для його спалювання
- 2.3. Парові котли малої та середньої продуктивності
- 2.4. Парові енергетичні котли
- 2.5. Парові котли енергоблоків ТЕС
- 2.6. Котли-утилізатори й енерготехнологічні котли
- 2.7. Створення та удосконалення водогрійних котлів
- 2.8. Водогрійні котли малої потужності
- 2.9. Водогрійні котли для комунальної енергетики
- 2.10. Водогрійні котли для централізованого теплопостачання
- 2.11. Електрокотли
- 2.12. Сучасний стан та напрямки розвитку котлобудування
- 2.13. Стан котельного господарства в Україні та напрямки його модернізації
- Розділ 3. Парові та газові турбіни
- 3.1. Еволюція парових турбін та їх основні типи
- 3.2. Основні елементи сучасних парових турбін
- 3.3. Основи експлуатації парових турбін
- 3.4. Стан паротурбінного обладнання в Україні
- 3.5. Шляхи удосконалення конструкцій парових турбін у світі
- 3.6. Історія розвитку енергетичного газотурбобудування
- 3.7. Основні елементи енергетичних газотурбінних установок та їх призначення
- 3.8. Створення та розвиток парогазових й газопарових установок, їх класифікація
- 3.9. Сучасний стан стаціонарного енергетичного газотурбобудування та шляхи його розвитку
- Розділ 4. Теплові електростанції
- Розділ 5. Централізоване теплопостачання великих міст
- Розділ 6. Перспективи розвитку теплової енергетики
- ЧАСТИНА 2. Гідроенергетика
- Розділ 1. Спорудження перших гідроелектростанцій. Етапи розвитку гідроенергетики
- Розділ 2. Гідроенергетичні ресурси, їх використання. Принципові схеми, параметри, режими роботи ГЕС і ГАЕС
- 2.1. Енергія й потужність водотоків
- 2.2. Гідроенергетичні ресурси та їх використання
- 2.3. Регулювання річкового стоку
- 2.4. Принципові схеми використання гідравлічної енергії на ГЕС
- 2.5. Основні енергетичні параметри ГЕС
- 2.6. Принципові схеми роботи ГАЕС
- 2.7. Основні енергетичні параметри ГАЕС
- 2.8. Режим роботи ГЕС та ГАЕС в об’єднаних енергосистемах
- 2.9. Комплексне використання та охорона водних ресурсів
- Розділ 3. Каскади ГЕС. Територіально-виробничі комплекси та енергокомплекси
- Розділ 4. Основні типи, умови експлуатації, режими роботи ГЕС і ГАЕС
- Розділ 5. Технологічне устаткування ГЕС і ГАЕС
- Розділ 6. Перспективи розвитку гідроенергетики
- Післямова
- Перелік скорочень
- Список використаної літератури
- Відомості про авторів