Книга 3. Розвиток теплоенергетики та гідроенергетики
7.3. Створення замкнутого ядерного паливного циклу
У даний час у зв'язку з інтенсивним удосконаленням існуючих конструкцій ядерних реакторів (еволюційні системи) і розробкою реакторів четвертого покоління з критичними і надкритичними параметрами країни з розвиненою атомною енергетикою віддають перевагу замкнутому ядерному паливному циклу (ЯПЦ). Створення замкнутого ядерного паливного циклу припускає переробку відпрацьованого ядерного палива (ВЯП) з витяганням з нього урану і трансуранових елементів (плутонію, нептунію, кюрію, америцію) і поверненням їх в паливний цикл АЕС після відповідного виготовлення паливної суміші для тепловиділяючих елементів (твелів) ядерних реакторів. Для цього потрібно створити економічно доцільну технологію радіохімічної переробки ВЯП, конкурентоздатну із видобуванням природного урану для майбутньої атомної енергетики. При створенні такої технології необхідно врахувати радіаційну безпеку експлуатуючого персоналу, оскільки ВЯП містить елементи, що мають високий рівень радіотоксичності.
Радіотоксичність ВЯП й РАВ АЕС. Радіотоксичність ВЯП визначається типом ядерного палива (уранове UO2, змішане уран-плутонієве паливо (U, Рu) О2), енергетичним спектром нейтронів в активній зоні реактора (типом реактора: ВВЕР або РБМК), глибиною вигорання палива і часом його зберігання після вивантаження з реактора. Загальні радіоактивні характеристики ВЯП розраховуються за допомогою комп'ютерних програм.
Для кожного елементу ВЯП програми розраховують величину радіоактивності, залишкового тепловиділення, радіотоксичності для даного стандартного рівня вигорання залежно від часу зберігання ВЯП після вивантаження з реактора (мал. 7.43, 7.44).
Повна радіоактивність ВЯП реактора ВВЕР-1000 протягом перших 200 років його зберігання визначатиметься в основному продуктами ділення і спадає від 1,4·105 після одного року витримки до 200 ТБк. Після 200 років зберігання внесок актиноїдів (~300 ТБк) в радіоактивність ОЯТ стає домінуючим і далі спадатиме дуже поволі в процесі природного радіоактивного розпаду до 100 ТБк після 1000 років й до 13 ТБк після 25000 років зберігання. Залишкове тепловиділення ОЯТ змінюється від 2 кВт/твм (1 рік зберігання) до 65 Вт/твм після 1000 років, де твм – тонна важкого металу.
Мал. 7.43. Радіоактивність ВЯП ВВЕР 1000, в одиницях(розпад/с)/твм (твм – тонна важкого металу). Вигоряння палива 40 ГВт·добу/т
Мал. 7.44. Радіотоксичність палива UO2 в залежності від часу зберігання (3,7% 235U, 45 ГВт·добу/т)
Тимчасову радіотоксичність ВЯП UO2 до 106 років визначають ізотопи плутонію і продукти їх розпаду, Np й дочірні продукти ізотопів урану визначають радіотоксичність в інтервалі в декілька мільйонів років. Збільшення вигоряння палива UO2 призводить до майже лінійного пропорційного накопичення у ВЯП актиноїдів, продуктів ділення, збільшення його активності та радіотоксичності. Крім того, при цьому змінюється ізотопний склад актиноїдів.
Паливні цикли атомної енергетики
У даний час в атомній енергетиці використовуються відкритий (червона лінія) й замкнутий (з відпрацьованого палива виокремлюється плутоній, який змішується з ураном для повторного використання в тепловому реакторі) паливні цикли. У майбутньому перевагу, ймовірно, буде віддано вдосконаленому замкнутому циклу (біла лінія): плутоній разом з іншими актинідами та можливо, ураном з відпрацьованого палива будуть перероблятися і використовуватися в спеціальних реакторах-допалювачах, що дозволить різко скоротити кількість відходів, які потребують довгострокового зберігання.
- Вступ
- ЧАСТИНА 1. Теплоенергетика
- Розділ 1. Основні поняття у теплоенергетиці
- Розділ 2. Парові та водогрійні котли
- 2.1. Загальні відомості, класифікація парових та водогрійних котлів
- 2.2. Органічне паливо та типи топкових пристроїв для його спалювання
- 2.3. Парові котли малої та середньої продуктивності
- 2.4. Парові енергетичні котли
- 2.5. Парові котли енергоблоків ТЕС
- 2.6. Котли-утилізатори й енерготехнологічні котли
- 2.7. Створення та удосконалення водогрійних котлів
- 2.8. Водогрійні котли малої потужності
- 2.9. Водогрійні котли для комунальної енергетики
- 2.10. Водогрійні котли для централізованого теплопостачання
- 2.11. Електрокотли
- 2.12. Сучасний стан та напрямки розвитку котлобудування
- 2.13. Стан котельного господарства в Україні та напрямки його модернізації
- Розділ 3. Парові та газові турбіни
- 3.1. Еволюція парових турбін та їх основні типи
- 3.2. Основні елементи сучасних парових турбін
- 3.3. Основи експлуатації парових турбін
- 3.4. Стан паротурбінного обладнання в Україні
- 3.5. Шляхи удосконалення конструкцій парових турбін у світі
- 3.6. Історія розвитку енергетичного газотурбобудування
- 3.7. Основні елементи енергетичних газотурбінних установок та їх призначення
- 3.8. Створення та розвиток парогазових й газопарових установок, їх класифікація
- 3.9. Сучасний стан стаціонарного енергетичного газотурбобудування та шляхи його розвитку
- Розділ 4. Теплові електростанції
- Розділ 5. Централізоване теплопостачання великих міст
- Розділ 6. Перспективи розвитку теплової енергетики
- ЧАСТИНА 2. Гідроенергетика
- Розділ 1. Спорудження перших гідроелектростанцій. Етапи розвитку гідроенергетики
- Розділ 2. Гідроенергетичні ресурси, їх використання. Принципові схеми, параметри, режими роботи ГЕС і ГАЕС
- 2.1. Енергія й потужність водотоків
- 2.2. Гідроенергетичні ресурси та їх використання
- 2.3. Регулювання річкового стоку
- 2.4. Принципові схеми використання гідравлічної енергії на ГЕС
- 2.5. Основні енергетичні параметри ГЕС
- 2.6. Принципові схеми роботи ГАЕС
- 2.7. Основні енергетичні параметри ГАЕС
- 2.8. Режим роботи ГЕС та ГАЕС в об’єднаних енергосистемах
- 2.9. Комплексне використання та охорона водних ресурсів
- Розділ 3. Каскади ГЕС. Територіально-виробничі комплекси та енергокомплекси
- Розділ 4. Основні типи, умови експлуатації, режими роботи ГЕС і ГАЕС
- Розділ 5. Технологічне устаткування ГЕС і ГАЕС
- Розділ 6. Перспективи розвитку гідроенергетики
- Післямова
- Перелік скорочень
- Список використаної літератури
- Відомості про авторів