Книга 3. Розвиток теплоенергетики та гідроенергетики
2.6. Використання гідравлічної енергії течій
В останні десятиріччя проводяться широкомасштабні дослідження практичного використання значного потенціалу течій в морях і океанах, які підрозділяють на неперіодичні, мусонні (пассатні) й припливновідпливні. З них в першу чергу розглядається можливість використання енергії головних неперіодичних течій (Гольфстрим, Куросіо та ін.), сумарний енергетичний потенціал яких за різними методиками оцінюється від 5 до 300 млрд. кВт. Такі різкі розходження в оцінках можна пояснити різницями в методиках розрахунку, відсутністю достатньо обґрунтованих уявлень відносно можливих параметрів використання енергії течій, екологічних наслідків, а також відсутністю практичного досвіду.
Попередньо оцінюється можливість використання до 1–2% енергії течій в морях і океанах без негативних екологічних наслідків. Суттєвими позитивними факторами використання їх енергії є висока забезпеченість їх потужності, закономірність зміни потужності в часі протягом року.
Так, течії Гольфстрім і Куросіо несуть відповідно 83 і 55 млн. м3/с води, а, наприклад, енергетична потужність флоридської течії (частини Гольфстріму) на східному узбережжі США з витратою 30 млн. м3/с оцінюється потужністю біля 20 млн. кВт.
Мал. 2.27. Установка для перетворення енергії океанських течій: 1 – лопатне робоче колесо; 2 – механічна система повороту лопатей; 3 – струмонаправляюча труба; 4 – анкерні розчалки; 5 – якірне кріплення
Також може використовуватися енергія мусонних течій, наприклад Сомалійської течії, яка омиває узбережжя Східної Африки та ін., енергія припливно-відпливних течій.
Запропоновано різні типи потужних енергетичних установок для використання енергії безнапірних потоків океанських течій (мал. 2.27), а також невеликих установок для використання енергії течій в річках і каналах.
У більшості запропонованих установок використовуються лопатеві робочі колеса з вертикальною або горизонтальною віссю обертання, занурені в поток під рівень води. У варіанті установки з розташуванням горизонтальної вісі обертання вздовж потоку робоче колесо має вигляд вітроколеса або колеса осьової гідравлічної турбіни (див. мал. 2.27). Установка розміщується біля дна моря на жорсткій опорі або розкріпляється в потоці за допомогою тросів і якорів.
Наприклад, в проекті використання енергії океанських течій у флоридській заплаві (США) передбачається розміщення 242 підводних установок потужністю 83 МВт кожна.
Недоліком таких установок є низька концентрація енергії, у зв’язку з чим вони характеризуються великими розмірами, високою матеріалоємністю і питомою вартістю.
Окрім установок для використання енергії течій безнапірних потоків, можуть використовуватися установки для перетворення енергії напірних потоків (у трубопроводах систем водопостачання, каналізації тощо). Для цього в трубопроводах можуть позташовуватися агрегати, які включають гідравлічну турбіну і генератор.
- Вступ
- ЧАСТИНА 1. Теплоенергетика
- Розділ 1. Основні поняття у теплоенергетиці
- Розділ 2. Парові та водогрійні котли
- 2.1. Загальні відомості, класифікація парових та водогрійних котлів
- 2.2. Органічне паливо та типи топкових пристроїв для його спалювання
- 2.3. Парові котли малої та середньої продуктивності
- 2.4. Парові енергетичні котли
- 2.5. Парові котли енергоблоків ТЕС
- 2.6. Котли-утилізатори й енерготехнологічні котли
- 2.7. Створення та удосконалення водогрійних котлів
- 2.8. Водогрійні котли малої потужності
- 2.9. Водогрійні котли для комунальної енергетики
- 2.10. Водогрійні котли для централізованого теплопостачання
- 2.11. Електрокотли
- 2.12. Сучасний стан та напрямки розвитку котлобудування
- 2.13. Стан котельного господарства в Україні та напрямки його модернізації
- Розділ 3. Парові та газові турбіни
- 3.1. Еволюція парових турбін та їх основні типи
- 3.2. Основні елементи сучасних парових турбін
- 3.3. Основи експлуатації парових турбін
- 3.4. Стан паротурбінного обладнання в Україні
- 3.5. Шляхи удосконалення конструкцій парових турбін у світі
- 3.6. Історія розвитку енергетичного газотурбобудування
- 3.7. Основні елементи енергетичних газотурбінних установок та їх призначення
- 3.8. Створення та розвиток парогазових й газопарових установок, їх класифікація
- 3.9. Сучасний стан стаціонарного енергетичного газотурбобудування та шляхи його розвитку
- Розділ 4. Теплові електростанції
- Розділ 5. Централізоване теплопостачання великих міст
- Розділ 6. Перспективи розвитку теплової енергетики
- ЧАСТИНА 2. Гідроенергетика
- Розділ 1. Спорудження перших гідроелектростанцій. Етапи розвитку гідроенергетики
- Розділ 2. Гідроенергетичні ресурси, їх використання. Принципові схеми, параметри, режими роботи ГЕС і ГАЕС
- 2.1. Енергія й потужність водотоків
- 2.2. Гідроенергетичні ресурси та їх використання
- 2.3. Регулювання річкового стоку
- 2.4. Принципові схеми використання гідравлічної енергії на ГЕС
- 2.5. Основні енергетичні параметри ГЕС
- 2.6. Принципові схеми роботи ГАЕС
- 2.7. Основні енергетичні параметри ГАЕС
- 2.8. Режим роботи ГЕС та ГАЕС в об’єднаних енергосистемах
- 2.9. Комплексне використання та охорона водних ресурсів
- Розділ 3. Каскади ГЕС. Територіально-виробничі комплекси та енергокомплекси
- Розділ 4. Основні типи, умови експлуатації, режими роботи ГЕС і ГАЕС
- Розділ 5. Технологічне устаткування ГЕС і ГАЕС
- Розділ 6. Перспективи розвитку гідроенергетики
- Післямова
- Перелік скорочень
- Список використаної літератури
- Відомості про авторів