Книга 3. Розвиток теплоенергетики та гідроенергетики
3.2.2. Загальна характеристика радіоактивності
Явище радіоактивності було відкрито в 1896 р А. Беккерелем, який виявив проникаюче випромінювання сполук урану, що діє на емульсію фотопластинки. При цьому він встановив, що інтенсивність випромінювання визначається тільки кількістю урану в препараті й абсолютно не залежить від того, в які сполуки він входить. Тобто ця властивість характерна не сполукам, а конкретному хімічному елементу – урану.
Явище самовільного випускання хімічними елементами випромінювання, що має високу проникаючу здатність та іонізуючі властивості, отримало назву природної радіоактивності. Елементи, які випускають таке випромінювання, називаються радіоактивними. Радіоактивними є всі елементи з порядковим номером більше 83 в таблиці Менделєєва (Z > 83), а також окремі ізотопи більш легких елементів.
Радіоактивність полягає в тому, що ядра радіоактивних елементів самовільно розпадаються з випусканням α-,β-частинок і γ-квантів чи шляхом ділення; при цьому вихідне ядро перетворюється в ядро іншого елемента.
Вже в перших дослідженнях було виявлено, що α-,β-промені відхиляються магнітним полем в різні боки, а γ-промені не відхиляються зовсім. Результати дослідження властивостей випромінювання наведено в табл. 3.1
Природна радіоактивність – самовільний розпад ядер елементів, які зустрічаються в природі. Зараз налічується близько 70 радіонуклідів природного походження. Послідовність нуклідів, кожен з яких самовільно завдяки радіоактивному розпаду переходить у наступний до тих пір, поки не буде отримано стабільний ізотоп, називається радіоактивним рядом. Вихідний нуклід називається материнським, а всі інші нукліди в ряду називають дочірніми. Всі вони генетично пов'язані між собою і знаходяться в певному співвідношенні.
Радіоактивні елементи природного походження умовно можуть бути розділені на три групи: радіоактивні ізотопи, що входять до складу радіоактивних сімейств, родоначальниками яких є уран 238U, торій 232Th і актиноуран 235AcU; окремі радіонукліди, які не мають генетичного зв'язку між собою: калій 40К, кальцій 48Са, рубідій 87Rb та ін; радіоактивні ізотопи, які безперервно виникають на Землі в результаті ядерних реакцій, під впливом космічних променів, в першу чергу вуглець 14С, берилій 7Ве і тритій 3Н.
Радіація заповнює весь Всесвіт. Радіоактивні речовини увійшли до складу Землі із самого її зародження. Вони знаходяться в гірських породах, воді, рослинах та тваринах. Навіть в органах людини завжди присутня певна незначна кількість радіоактивних елементів.
Основну частину опромінення населення земної кулі одержує від природних джерел радіації. Більшість з них такі, що уникнути опромінення від них зовсім неможливо. Радіоактивні речовини можуть знаходитися поза організмом і опромінювати його зовні (зовнішнє опромінення). Вони також можуть опинитися в повітрі, в їжі або у воді й потрапити всередину організму (внутрішнє опромінення).
Штучна радіоактивність – самовільний розпад ядер елементів, отриманих штучним шляхом через відповідні ядерні реакції, – відкрита французькими фізиками Фредеріком та Ірен Жоліо-Кюрі в 1934 р. На даний час відомо понад 1500 штучно-радіоактивних ізотопів, тоді як природно-радіоактивних ізотопів існує лише близько 40, а кількість стійких (нерадіоактивних) ізотопів дорівнює 260.
Принципової різниці між природною і штучною радіоактивністю немає, оскільки ядерні перетворення можна викликати за допомогою заряджених частинок (протонів, ?-частинок тощо), фотонного випромінювання або нейтронів. Однак серед штучно-радіоактивних речовин часто зустрічається ще інший тип розпаду, не властивий природнорадіоактивним елементам. Це розпад з випусканням позитронів – частинок, які мають масу електрона, але несуть позитивний заряд (е+). За абсолютною величиною заряди позитрона й електрона рівні.
Основна маса радіоактивних ізотопів отримана штучно в ядерних реакторах і прискорювальних установках в результаті взаємодій іонізуючих випромінювань зі стабільними ізотопами.
Таблиця 3.1 Основні характеристики властивостей випромінювання речовини
Позначення |
Природа |
Зарядове і масове число |
Енергія |
Швидкість |
α–промені |
потік повністю іонізованих атомів гелію |
або |
4–9 МэВ |
107 м/с |
β–промені |
потік швидких електронів |
або |
безперервний спектр енергії від 0 до 782 кэВ |
108 м/с |
γ–промені |
жорстке електромагнітне випромінення (?=10-2 нм) |
– |
лінійчастий спектр енергії |
3·108 м/с |
- Вступ
- ЧАСТИНА 1. Теплоенергетика
- Розділ 1. Основні поняття у теплоенергетиці
- Розділ 2. Парові та водогрійні котли
- 2.1. Загальні відомості, класифікація парових та водогрійних котлів
- 2.2. Органічне паливо та типи топкових пристроїв для його спалювання
- 2.3. Парові котли малої та середньої продуктивності
- 2.4. Парові енергетичні котли
- 2.5. Парові котли енергоблоків ТЕС
- 2.6. Котли-утилізатори й енерготехнологічні котли
- 2.7. Створення та удосконалення водогрійних котлів
- 2.8. Водогрійні котли малої потужності
- 2.9. Водогрійні котли для комунальної енергетики
- 2.10. Водогрійні котли для централізованого теплопостачання
- 2.11. Електрокотли
- 2.12. Сучасний стан та напрямки розвитку котлобудування
- 2.13. Стан котельного господарства в Україні та напрямки його модернізації
- Розділ 3. Парові та газові турбіни
- 3.1. Еволюція парових турбін та їх основні типи
- 3.2. Основні елементи сучасних парових турбін
- 3.3. Основи експлуатації парових турбін
- 3.4. Стан паротурбінного обладнання в Україні
- 3.5. Шляхи удосконалення конструкцій парових турбін у світі
- 3.6. Історія розвитку енергетичного газотурбобудування
- 3.7. Основні елементи енергетичних газотурбінних установок та їх призначення
- 3.8. Створення та розвиток парогазових й газопарових установок, їх класифікація
- 3.9. Сучасний стан стаціонарного енергетичного газотурбобудування та шляхи його розвитку
- Розділ 4. Теплові електростанції
- Розділ 5. Централізоване теплопостачання великих міст
- Розділ 6. Перспективи розвитку теплової енергетики
- ЧАСТИНА 2. Гідроенергетика
- Розділ 1. Спорудження перших гідроелектростанцій. Етапи розвитку гідроенергетики
- Розділ 2. Гідроенергетичні ресурси, їх використання. Принципові схеми, параметри, режими роботи ГЕС і ГАЕС
- 2.1. Енергія й потужність водотоків
- 2.2. Гідроенергетичні ресурси та їх використання
- 2.3. Регулювання річкового стоку
- 2.4. Принципові схеми використання гідравлічної енергії на ГЕС
- 2.5. Основні енергетичні параметри ГЕС
- 2.6. Принципові схеми роботи ГАЕС
- 2.7. Основні енергетичні параметри ГАЕС
- 2.8. Режим роботи ГЕС та ГАЕС в об’єднаних енергосистемах
- 2.9. Комплексне використання та охорона водних ресурсів
- Розділ 3. Каскади ГЕС. Територіально-виробничі комплекси та енергокомплекси
- Розділ 4. Основні типи, умови експлуатації, режими роботи ГЕС і ГАЕС
- Розділ 5. Технологічне устаткування ГЕС і ГАЕС
- Розділ 6. Перспективи розвитку гідроенергетики
- Післямова
- Перелік скорочень
- Список використаної літератури
- Відомості про авторів