Книга 3. Розвиток теплоенергетики та гідроенергетики
3.2.4. Закони радіоактивного розпаду
Атомні ядра є стабільними лише при певному співвідношенні в них кількості протонів Z та нейтронів N. Це співвідношення приблизно може бути описано емпіричної формулою
де А – масове число (А = Z + N).
З цієї формули випливає, що при малих масових числах (1 < A < 10) кількість протонів приблизно дорівнює кількості нейтронів; при великих масових числах (A >> 10) кількість протонів зростає як корінь кубічний з А; при надлишку кількості нуклонів (відхилення від «смуги стабільності ядер») виникають радіоактивні перетворення, які зменшують ступінь відхилення ядер і стабілізують конфігурацію нуклонів. Можливі канали радіоактивного розпаду материнського ядра систематизовані у наступній схемі.
Возможные каналы радиоактивного распада материнского ядра систематизированы на приведенной выше схеме.
Процеси радіоактивного розпаду мають стохастичний характер. Вони описуються законами теорії ймовірностей. Проте, якщо процес розпаду розглядати за час, який набагато більшийперіодів характерних внутрішніх перетворень, і для об'єкта, що містить велику кількість ядер (макрооб'єкта), то це явище цілком можна описати як детермінований процес.
Якщо у зразку в момент часу t є N радіоактивних ядер, то кількість ядер dN, що розпалися за час dt, буде пропорційно N:
dN = –λNdt , де λ – коефіцієнт пропорційності, який називається постійною радіоактивного розпаду.
При інтегруванні наведеного виразу отримаємо закон радіоактивного розпаду:
N(t) =N0eхр-λt=N0e-λt , де N0 – вихідна кількість радіоактивних ядер в момент часу t = 0.
Постійна радіоактивного розпаду λ визначає іншу, часто використовувану характеристику радіоактивного розпаду – період напіврозпаду T1/2 :
Період напіврозпаду T1/2 – час, протягом якого розпадеться половина радіоактивних ядер, що первісно були у зразку. Після одного періоду напіврозпаду зі 100% атомів радіонукліду залишається тільки 50%, а за наступний такий же часовий цикл із цих 50% атомів залишиться лише 25% і так далі.
Для кожного радіонукліда характерний свій період напіврозпаду. Періоди напіврозпаду різних радіонуклідів варіюють в діапазоні від мільярдних часток секунди до десятків мільярдів років. Зокрема, деякі з продуктів поділу мають періоди напіврозпаду в десятки – сотні років, що являє собою одну з головних проблем сучасної атомної енергетики.
Кількість розпадів, які реєструються в радіоактивному зразку за одиницю часу, називають його активністю.
Важливо відзначити, що кількість енергії, виділеної в результаті ланцюжка радіоактивних розпадів, що перетворюють 1 г урану в свинець, таке ж, як при згорянні 400 кг вугілля.
Активність A характеризує середню кількість ядер, які розпадаються в одиницю часу:
A(t) = λN(t). Згідно з чинною Міжнародною системою одиниць СІ, за одиницю виміру активності приймається бекерель (Бк), названий на честь ученого-фізика А. Беккереля. Один бекерель дорівнює одному розпаду в секунду. Ця одиниця досить зручна для оцінки малих кількостей радіонуклідів. Наприклад, один мікрограм (10-6 грама) радію має активність, рівну 3700 Бк.
Разом з тим до цього часу досить часто при вимірюванні великих активностей використовують позасистемну одиницю активності – кюрі (Кі), введену в практику подружжям Кюрі як міра швидкості розпаду одного грама радію, в якому відбуваються 3,7· 1010 розпадів за секунду. Тому прийнято, що 1 Кі = 3,7 · 1010 розпадів c = 37 ГБк.
Кюрі як одиницю вимірювання часто застосовують при оцінці радіоактивних забруднень, пов'язаних з глобальними випадіннями. Наприклад, обумовлене випробуваннями ядерної зброї випадіння радіонуклідів на поверхню Землі з атмосфери на сьогодні становить близько 0,1 Кі км2.
- Вступ
- ЧАСТИНА 1. Теплоенергетика
- Розділ 1. Основні поняття у теплоенергетиці
- Розділ 2. Парові та водогрійні котли
- 2.1. Загальні відомості, класифікація парових та водогрійних котлів
- 2.2. Органічне паливо та типи топкових пристроїв для його спалювання
- 2.3. Парові котли малої та середньої продуктивності
- 2.4. Парові енергетичні котли
- 2.5. Парові котли енергоблоків ТЕС
- 2.6. Котли-утилізатори й енерготехнологічні котли
- 2.7. Створення та удосконалення водогрійних котлів
- 2.8. Водогрійні котли малої потужності
- 2.9. Водогрійні котли для комунальної енергетики
- 2.10. Водогрійні котли для централізованого теплопостачання
- 2.11. Електрокотли
- 2.12. Сучасний стан та напрямки розвитку котлобудування
- 2.13. Стан котельного господарства в Україні та напрямки його модернізації
- Розділ 3. Парові та газові турбіни
- 3.1. Еволюція парових турбін та їх основні типи
- 3.2. Основні елементи сучасних парових турбін
- 3.3. Основи експлуатації парових турбін
- 3.4. Стан паротурбінного обладнання в Україні
- 3.5. Шляхи удосконалення конструкцій парових турбін у світі
- 3.6. Історія розвитку енергетичного газотурбобудування
- 3.7. Основні елементи енергетичних газотурбінних установок та їх призначення
- 3.8. Створення та розвиток парогазових й газопарових установок, їх класифікація
- 3.9. Сучасний стан стаціонарного енергетичного газотурбобудування та шляхи його розвитку
- Розділ 4. Теплові електростанції
- Розділ 5. Централізоване теплопостачання великих міст
- Розділ 6. Перспективи розвитку теплової енергетики
- ЧАСТИНА 2. Гідроенергетика
- Розділ 1. Спорудження перших гідроелектростанцій. Етапи розвитку гідроенергетики
- Розділ 2. Гідроенергетичні ресурси, їх використання. Принципові схеми, параметри, режими роботи ГЕС і ГАЕС
- 2.1. Енергія й потужність водотоків
- 2.2. Гідроенергетичні ресурси та їх використання
- 2.3. Регулювання річкового стоку
- 2.4. Принципові схеми використання гідравлічної енергії на ГЕС
- 2.5. Основні енергетичні параметри ГЕС
- 2.6. Принципові схеми роботи ГАЕС
- 2.7. Основні енергетичні параметри ГАЕС
- 2.8. Режим роботи ГЕС та ГАЕС в об’єднаних енергосистемах
- 2.9. Комплексне використання та охорона водних ресурсів
- Розділ 3. Каскади ГЕС. Територіально-виробничі комплекси та енергокомплекси
- Розділ 4. Основні типи, умови експлуатації, режими роботи ГЕС і ГАЕС
- Розділ 5. Технологічне устаткування ГЕС і ГАЕС
- Розділ 6. Перспективи розвитку гідроенергетики
- Післямова
- Перелік скорочень
- Список використаної літератури
- Відомості про авторів