Книга 2. Пізнання й досвід – шлях до сучасної енергетики
1.4. Теплоємність
Кількість теплоти dq, наданої 1 кг тіла в якому-небудь процесі, часто виражають через приріст температури dT цього тіла: dq=cdT. Множник с називають питомою теплоємністю речовини.
Поняття «теплоємність» виникло у XVII столітті. Тоді цей вираз застосовувався у двох зовсім різних значеннях. Одні використовували його для позначення повної кількості так званого теплороду, що «містився» у тілі, інші, й таких була більшість, застосовували його в сучасному значенні для позначення кількості теплоти, яка необхідна, щоб нагріти чи охолодити тіло на один градус (за вибраною шкалою температур). Від цього поняття легко перейти до поняття питомої теплоємності, тобто теплоємності одиниці маси тіла.
Французькі фізики П'єр Луї Дюлонг (1785– 1838) та Алексі Терез Пті (1741–1820) визначили питомі теплоємності великої кількості твердих тіл, що привело їх до знаменитого емпіричного закону сталості добутку питомої теплоємності на атомну масу. Метод вимірювання питомої теплоємності, заснований на розтопленні льоду, був застосований у спільній роботі французьких фізиків Антуана Лавуазьє і П'єра Симона Лапласа. Відомості про цю роботу наведені у дослідженні, опублікованому у 1784 р. в «Мемуарах Паризької академії наук» (датованих 1780 р.). Лавуазьє і Лаплас сконструювали прилад, названий ними калориметром (така назва до цього часу залишилась у науці), який складався із трьох концентричних резервуарів. У внутрішньому металевому резервуарі розміщували нагріте тіло, у проміжному – лід, а у зовнішньому – воду чи лід, що служили для забезпечення постійної температури 0°С у проміжному резервуарі. За кількістю льоду, що розтанув, враховуючи водяний еквівалент внутрішньої посудини, вчені визначили питомі теплоємності багатьох тіл, твердих і рідких. Вони відкрили, що питома теплоємність тіла не постійна, а залежить від температури.
На сьогодні встановлено, що теплоємність с газів (окрім одноатомних) при атмосферному тиску зростає із підвищенням температури.
Теплоємність більшості рідин із зростанням температури також зростає. Для багатьох твердих тіл, які не зазнають фазових переходів, теплоємність слабко залежить від температури (закон Дюлонга і Пті). Теплоємність плазми може як зростати, так і знижуватись при підвищенні температури.
Питомі теплоємності деяких речовин (при 0°С і нормальному тиску 760 мм рт. ст.) наведено у таблиці.
Таблиця 1.1. Питома теплоємність різних речовин
Речовина |
с[кДж/кг·К] |
Азот |
28,492 |
Алюміній |
0,880 |
Водень |
28,550 |
Залізо |
0,436 |
Кварц |
0,723 |
Мідь |
0,381 |
Свинець |
0,126 |
Спиртетиловий |
2,292 |
При нагріванні тверді й рідкі тіла розширюються у меншій мірі, ніж газоподібні. У той же час речовини саме в газоподібному (пароподібному) стані виконують робочі процеси у теплових двигунах. Тому так важливо знати характерні особливості поведінки газоподібних тіл при нагріванні.
Роберт Бойль (1672–1691) – англійський фізик і хімік
Поштова марка із зображенням французського фізика й хіміка Ж. Гей Люссака
У XVII–XIX століттях дослідниками, які вивчали поведінку газів при тисках, близьких до атмосферного, емпіричним шляхом була встановлена низка важливих закономірностей.
У 1662 р. англійський фізик і хімік Роберт Бойль (1627–1691), а у 1676 р. незалежно від нього французький вчений Едм Маріотт (1620–1684) показали, що при постійній температурі добуток тиску ідеального газу на його об'єм сталий, тобто в ізотермічному процесі розширення чи стиснення газу (закон Бойля–Маріотта)
pV = const.
У 1802 р. французький фізик і хімік Ж. ГейЛюссак встановив, що коли тиск газу в процесі нагрівання підтримувати незмінним, то об'єм газу буде лінійно збільшуватись із ростом температури:
V=V0(1+αt).
Це співвідношення називають законом Гей-Люссака. Тут V0 – об'єм газу при температурі 0°C; V – об'єм газу при температурі t°C; α– коефіцієнт об'ємного розширення газу. Було доведено, що при досить низьких тисках величина αвиявляється однаковою для різних газів, тобто всі розріджені гази мають однаковий коефіцієнт об'ємного розширення, рівний приблизно α= 1/273 = 0,00366 град–1, точними сучасними вимірюваннями встановлено, що α= 0,003661 град–1.
Існує також залежність (універсальне рівняння стану), що пов'язує значення тиску p, об'єму V і температури Т чистої речови ни, – рівняння Менделєєва Клапейрона (див. далі у розділі «Основи термодинаміки»).
- Вступ
- ЧАСТИНА 1. Мистецтво пізнавати навколишній світ
- ЧАСТИНА 2. Розвиток вчення про теплоту, термодинаміку, теплопередачу і теплові машини
- Розділ 1. Теплота
- Розділ 2. Основи термодинаміки
- 2.1. Предмет і метод термодинаміки
- 2.2. Основні поняття і визначення
- 2.3. Перший закон термодинаміки
- 2.4. Другий закон термодинаміки
- 2.5. Поняття ексергії
- 2.6. Третій закон термодинаміки (тепловий закон Нернста)
- 2.7. Ентропія і невпорядкованість (статистичний характер другого закону термодинаміки)
- 2.8. Філософсько-методологічні основи другого закону термодинаміки
- 2.9. Термодинаміка на рубежі ХХІ століття. Стан і перспективи
- Розділ 3. Основи теплопередачі
- Розділ 4. Створення механізмів і машин для спалювання палива та використання теплової енергії
- ЧАСТИНА 3. Розвиток вчення про електрику і магнетизм. Становлення електроенергетики
- Розділ 5. Перші спостереження та експериментальні дослідження електрики і магнетизму. Відкриття основних властивостей і законів електрики
- 5.1. Перші відомості про електрику тертя і магнетизм
- 5.2. Електропровідність. Провідники та ізолятори
- 5.3. Два роди електричних зарядів. Закон Кулона
- 5.4. Електричне поле і його характеристики
- 5.5. Електрична ємність. Конденсатор
- 5.6. Електрична машина тертя. Індукційна машина
- 5.7. Досліди з електричним розрядом. Вивчення атмосферної електрики
- Розділ 6. Вивчення електричного струму. Встановлення основних законів електричного кола
- Розділ 7. Теплова і світлова дія електричного струму. Зародження основ електродинаміки
- Розділ 8. Винахід перших електричних машин. Створення центральних електричних станцій
- Розділ 9. Винахід електродвигунів та електричної тяги
- Розділ 10. Розвиток електротехнологій
- Розділ 11. Створення перших систем передачі й розподілу електричної енергії
- Розділ 12. Об'єднання електричних мереж для паралельної роботи. Створення енергетичних систем
- Розділ 13. Енергетика Росії на початку ХХ століття
- Розділ 14. План ГОЕЛРО – перший у світовій історії план розвитку народного господарства
- Розділ 15. Створення і становлення енергетичної системи України
- Розділ 5. Перші спостереження та експериментальні дослідження електрики і магнетизму. Відкриття основних властивостей і законів електрики
- ЧАСТИНА 4. Становлення атомної енергетики
- Висновок
- Коли б не вони... Хронологія найважливіших відкриттів у галузі енергетики
- Список використаної літератури
- Відомості про авторів