Книга 2. Пізнання й досвід – шлях до сучасної енергетики
5.5. Електрична ємність. Конденсатор
Подальші досліди з розподілом електрики по поверхні наелектризованого провідника, проведені Кулоном та іншими дослідниками, дозволили встановити, що рівномірний розподіл електрики має місце тільки на правильній кульовій поверхні. У загальному випадку заряд є нерівномірним і залежить від форми провідника, будучи більшим в місцях більшої кривизни. Відношення кількості електрики на частині поверхні провідника до величини цієї поверхні назвали густиною (товщиною) електричного шару. Експериментально було встановлено, що електрична густина і електрична сила особливо великі в місцях поверхні, які мають найбільшу кривизну, особливо на вістрях.
Величину, що характеризує залежність потенціалу наелектризованого провідника від його розмірів, форми й навколишнього середовища, називають електроємністю провідника й позначають буквою С. Електроємність провідника вимірюється кількістю електрики, яка необхідна для підвищення потенціалу цього провідника на одиницю:
С = q/ϕ.
За одиницю електроємності в системі СІ приймається 1 фарада (1 Ф). Фарадою називається електроємність провідника, якому для підвищення його потенціалу на один вольт потрібно надати один кулон електрики.
Електроємність, що дорівнює 1 Ф, мала б куля радіусом 9·106 км, що в 23 рази більше відстані від Землі до Місяця.
Якщо провідник з'єднати із джерелом електрики певного потенціалу, то провідник одержить електричний заряд, що залежить від ємності провідника. Його ємність, а, отже, і кількість електрики, якою він заряджається, збільшуються, якщо наблизити до нього другий провідник, з'єднаний із землею. Конструкція, що складається із двох провідників, розділених ізолятором, з електричним полем між ними, усі силові лінії якого починаються на одному провіднику, а закінчуються на іншому, була названа електричним конденсато ром. При цьому обидва провідника називаються обкладками, а ізолююча прокладка – діелектриком. Процес нагромадження зарядів на обкладках конденсатора називається його зарядкою. При зарядці на обох обкладках накопичуються рівні за величиною й протилежні за знаком заряди. Оскільки електричне поле зарядженого конденсатора зосереджене в просторі між його обкладками, то електроємність конденсатора не залежить від навколишніх тел.
Електроємність конденсатора вимірюється відношенням кількості електрики на одній з обкладок до різниці потенціалів між обкладками:
С = q/U.
1 Ф – електроємність такого конденсатора, який може бути заряджений кількістю електрики, рівною 1 Кл, до різниці потенціалів між обкладками, що дорівнює 1 В.
Наприклад, електрична ємність плоского конденсатора в системі СІ визначається за співвідношенням:
С = εε0S/d,
де ε – діелектрична проникність матеріалу, що знаходиться між обкладками конденсатора; ε0 – діелектрична проникність вакууму; S – величина площі поверхні пластини (меншої, якщо вони не рівні); d – відстань між пластинами.
Якщо обкладки зарядженого конденсатора з'єднати провідником, то заряди переходитимуть з однієї обкладки на іншу і нейтралізують один одного. Цей процес називається розрядкою конденсатора. Кожен конденсатор розрахований на певну напругу. Якщо напруга між обкладками стане дуже великою, то розрядка може відбутися і безпосередньо через діелектрик (без сполучного провідника), тобто настає пробій діелектрика. Пробитий конденсатор до подальшого вживання не придатний.
Для отримання електроємності потрібної величини конденсатори сполучають в батарею. На практиці зустрічається як паралельне, так і послідовне з'єднання конденсаторів.
- Вступ
- ЧАСТИНА 1. Мистецтво пізнавати навколишній світ
- ЧАСТИНА 2. Розвиток вчення про теплоту, термодинаміку, теплопередачу і теплові машини
- Розділ 1. Теплота
- Розділ 2. Основи термодинаміки
- 2.1. Предмет і метод термодинаміки
- 2.2. Основні поняття і визначення
- 2.3. Перший закон термодинаміки
- 2.4. Другий закон термодинаміки
- 2.5. Поняття ексергії
- 2.6. Третій закон термодинаміки (тепловий закон Нернста)
- 2.7. Ентропія і невпорядкованість (статистичний характер другого закону термодинаміки)
- 2.8. Філософсько-методологічні основи другого закону термодинаміки
- 2.9. Термодинаміка на рубежі ХХІ століття. Стан і перспективи
- Розділ 3. Основи теплопередачі
- Розділ 4. Створення механізмів і машин для спалювання палива та використання теплової енергії
- ЧАСТИНА 3. Розвиток вчення про електрику і магнетизм. Становлення електроенергетики
- Розділ 5. Перші спостереження та експериментальні дослідження електрики і магнетизму. Відкриття основних властивостей і законів електрики
- 5.1. Перші відомості про електрику тертя і магнетизм
- 5.2. Електропровідність. Провідники та ізолятори
- 5.3. Два роди електричних зарядів. Закон Кулона
- 5.4. Електричне поле і його характеристики
- 5.5. Електрична ємність. Конденсатор
- 5.6. Електрична машина тертя. Індукційна машина
- 5.7. Досліди з електричним розрядом. Вивчення атмосферної електрики
- Розділ 6. Вивчення електричного струму. Встановлення основних законів електричного кола
- Розділ 7. Теплова і світлова дія електричного струму. Зародження основ електродинаміки
- Розділ 8. Винахід перших електричних машин. Створення центральних електричних станцій
- Розділ 9. Винахід електродвигунів та електричної тяги
- Розділ 10. Розвиток електротехнологій
- Розділ 11. Створення перших систем передачі й розподілу електричної енергії
- Розділ 12. Об'єднання електричних мереж для паралельної роботи. Створення енергетичних систем
- Розділ 13. Енергетика Росії на початку ХХ століття
- Розділ 14. План ГОЕЛРО – перший у світовій історії план розвитку народного господарства
- Розділ 15. Створення і становлення енергетичної системи України
- Розділ 5. Перші спостереження та експериментальні дослідження електрики і магнетизму. Відкриття основних властивостей і законів електрики
- ЧАСТИНА 4. Становлення атомної енергетики
- Висновок
- Коли б не вони... Хронологія найважливіших відкриттів у галузі енергетики
- Список використаної літератури
- Відомості про авторів