Книга 2. Пізнання й досвід – шлях до сучасної енергетики
5.2. Система теплопостачання міст Москви й Санкт-Петербурга
Пріоритетний розвиток систем централізованого теплопостачання характерний для великих міст держав СНД. У Росії масштаби централізації теплопостачання споживачів досягають 80% (із врахуванням районних й промислових котельних), у тому числі 30% – від ТЕЦ.
Система теплопостачання столиці Росії – м. Москви охоплює територію у межах міської забудови площею 994 км2, де живуть близько 15 млн. чоловік.
Найбільший виробник енергії – Мосенерго – забезпечує енергетичні потреби власне м. Москви й Московської області. Виробництво теплоти для московських споживачів відбувається на 15 теплоелектроцентралях. Сумарна теплова потужність цих ТЕЦ складає близько 30 000 Гкал/год у гарячій воді й більше 1700 Гкал/год – у парі. Основне паливо ТЕЦ – природний газ, частка якого складає 93%, резервне – мазут. Із п’ятнадцяти ТЕЦ Мосенерго дванадцять рівномірно розташовані на території міста, а більш нові й потужні – на його периферії.Будівництво енергоблоку ПГУ-450Т на ТЕЦ-27 ВАТ «Мосенерго»
ТЕЦ-27 ВАТ «Мосенерго» – одна із найбільш сучасних і екологічно чистих ТЕС Росії. На ТЕЦ-27 22 листопада 2007 року введений в експлуатацію енергоблок № 3. Установлена потужність блоку – 450 МВт по електричній енергії і 300 Гкал – по теплоті. На блоці установлені дві газові турбіни одиничною потужністю 160 МВт й парова турбіна потужністю 130 МВт. В основі роботи блоку – технологія парогазового циклу, яка забезпечує високий к.к.д. на рівні 51,5%, дозволяє економити до 20–25% палива й знижує на третину об’єм викидів в атмосферу. Ця перша парогазова установка у московському регіоні побудована в рекордні терміни, що не мають аналогів для цього типу об’єктів, – 22 місяці. З вводом у дію блоку № 3 установлена електрична потужність ТЕЦ-27 складає 610 МВт, теплова – 1576 Гкал/год. У даний час на ТЕЦ-27 введено такий же за потужністю енергоблок № 4.
На теплоелектроцентралях застосовуються такі типи теплофікаційних турбін: з протитиском – типу Р потужністю 6; 12; 25; 50 МВт; для виробництва теплоти на технологічні потреби – типу П, ПР потужністю 6; 14;
16 МВт; для одночасного покриття технологічних й теплофікаційних потреб – типу ПТ потужністю 35; 60; 65; 80 МВт; для теплофікаційних потреб - типу Т потужністю 25; 30; 50;
60; 100; 110; 116 і 250 МВт. Крім того, на ТЕЦ м. Москви встановлено 108 водогрійних котлів типів ПТВМ-100, ПТВМ-180, КВГМ-180 сумарною тепловою потужністю 16 900 Гкал/год.
Теплопостачання споживачів м. Москви ведеться в основному гарячою водою.
Розрахунковий температурний графік теплоносіїв Мосенерго у межах Москви –150/70°С. Тим не менше у зимовий період при низьких температурах (–20°С і нижче) введена «зрізка» температурного графіку до 130°С.
Слід відмітити, що через географічне розташування Москви опалювальний сезон у середньому на один місяць довший у порівнянні з Києвом, а розрахункова температура опалення для Москви складає 25°С. Коефіцієнт теплофікації для ТЕЦ Москви складає близько 66%.
Система теплофікації Санкт-Петербурга значно відрізняється за технологією відпуску теплової енергії від розглянутих вище: тут застосовано відкрите водопостачання, тобто відпуск теплоти на потреби гарячого водопостачання проводиться шляхом прямого відбору теплоносія безпосередньо із трубопроводів тепломереж. Таке рішення пов’язане з особливостями розташування Санкт-Петербурга на ґрунтах, надмірно насичених водою, і наявністю великої кількості внутрішніх каналів й річок. З цієї причини, на відміну від Києва, у Санкт-Петербурзі з початку розвитку централізованого теплопостачання застосовується безканальна прокладка теплотрас, яка більш витратна у порівнянні з канальною. Відкрита система теплопостачання дозволяє скоротити протяжність трубопроводів й отримати економію коштів на їх монтаж, експлуатацію й ремонт. В організаційному плані й за своїм технічним оснащенням система теплофікації Санкт-Петербурга наближається до московської.
У даний час теплопостачання Санкт-Петербурга забезпечують:
• АТ «Лененерго», на балансі якого знаходяться всі місцеві ТЕЦ (у межах міста – 9 ТЕЦ) й одна котельня, а частка відпуску теплоти Лененерго у загальному тепловому балансі міста складає близько 50%;
• губернський паливно-енергетичний комплекс Санкт-Петербурга, на балансі якого знаходяться декілька великих водогрійних котельних та декілька десятків дрібних котельних. Їх установлена теплова потужність приблизно дорівнює сумарній тепловій потужності ТЕЦ Лененерго, а частка відпуску теплоти складає близько 49% загальноміської;
• локальні відомчі й модульні котельні, на частку яких припадають 1–2% відпуску теплоти.
Наявна теплова потужність теплоджерел Лененерго складає біля 10500 Гкал/год, із них у гарячій воді близько 9400 Гкал/год, а у парі – близько 1000 Гкал/год. Структура палива котлів Лененерго відрізняється від структури палива Мосенерго. В основному використовується природний газ (його частка складає 85%), але достатньо великою є частка мазуту – 12–13%, а частка вугілля – до 2,5%.
Розрахунковий температурний графік систем теплопостачання – 150/70°С. Розрахункова температура опалення для Санкт-Петербурга складає 26°С, а опалювальний сезон у середньому на 1 місяць довший у порівнянні з Києвом.
На балансі Лененерго знаходяться магістральні та розподільні теплопроводи, довжина магістралей складає близько 126 км, розподільних мереж – близько 200 км й 12 км вводів. Через відкритість системи втрати теплоносія достатньо значні й складають 23–25% загального об’єму. У зимовий період теплоносій (гаряча вода) проходить опалювальні прилади у споживача й після зниження до необхідного температурного рівня в елеваторних вузлах подається на водозбір для покриття потреб гарячого водопостачання, а залишок повертається на теплоджерело. Така схема потребує виконання відповідних санітарно-гігієнічних вимог до якості гарячої води.
Розвиток промислових підприємств у Санкт-Петербурзі проходив у межах міської забудови, відповідно частка теплоспоживання промисловістю більша, ніж у Києві й Москві, та складає близько 40% у середньому за рік.
- Вступ
- ЧАСТИНА 1. Мистецтво пізнавати навколишній світ
- ЧАСТИНА 2. Розвиток вчення про теплоту, термодинаміку, теплопередачу і теплові машини
- Розділ 1. Теплота
- Розділ 2. Основи термодинаміки
- 2.1. Предмет і метод термодинаміки
- 2.2. Основні поняття і визначення
- 2.3. Перший закон термодинаміки
- 2.4. Другий закон термодинаміки
- 2.5. Поняття ексергії
- 2.6. Третій закон термодинаміки (тепловий закон Нернста)
- 2.7. Ентропія і невпорядкованість (статистичний характер другого закону термодинаміки)
- 2.8. Філософсько-методологічні основи другого закону термодинаміки
- 2.9. Термодинаміка на рубежі ХХІ століття. Стан і перспективи
- Розділ 3. Основи теплопередачі
- Розділ 4. Створення механізмів і машин для спалювання палива та використання теплової енергії
- ЧАСТИНА 3. Розвиток вчення про електрику і магнетизм. Становлення електроенергетики
- Розділ 5. Перші спостереження та експериментальні дослідження електрики і магнетизму. Відкриття основних властивостей і законів електрики
- 5.1. Перші відомості про електрику тертя і магнетизм
- 5.2. Електропровідність. Провідники та ізолятори
- 5.3. Два роди електричних зарядів. Закон Кулона
- 5.4. Електричне поле і його характеристики
- 5.5. Електрична ємність. Конденсатор
- 5.6. Електрична машина тертя. Індукційна машина
- 5.7. Досліди з електричним розрядом. Вивчення атмосферної електрики
- Розділ 6. Вивчення електричного струму. Встановлення основних законів електричного кола
- Розділ 7. Теплова і світлова дія електричного струму. Зародження основ електродинаміки
- Розділ 8. Винахід перших електричних машин. Створення центральних електричних станцій
- Розділ 9. Винахід електродвигунів та електричної тяги
- Розділ 10. Розвиток електротехнологій
- Розділ 11. Створення перших систем передачі й розподілу електричної енергії
- Розділ 12. Об'єднання електричних мереж для паралельної роботи. Створення енергетичних систем
- Розділ 13. Енергетика Росії на початку ХХ століття
- Розділ 14. План ГОЕЛРО – перший у світовій історії план розвитку народного господарства
- Розділ 15. Створення і становлення енергетичної системи України
- Розділ 5. Перші спостереження та експериментальні дослідження електрики і магнетизму. Відкриття основних властивостей і законів електрики
- ЧАСТИНА 4. Становлення атомної енергетики
- Висновок
- Коли б не вони... Хронологія найважливіших відкриттів у галузі енергетики
- Список використаної літератури
- Відомості про авторів