Книга 2. Пізнання й досвід – шлях до сучасної енергетики
2.4. Принципові схеми використання гідравлічної енергії на ГЕС
Комплекс гідротехнічних споруд і енергетичного устаткування, за допомогою яких гідравлічна (водна) енергія перетворюється в електричну енергію, називають гідроелектростанцією.
Для перетворення механічної енергії водного потоку в електроенергію шляхом створення на виділеній ділянці ріки зосередженого перепаду (напору) застосовуються принципові схеми ГЕС, наведені на мал. 2.5.
Гребельна схема характеризується тим, що напір на ГЕС створюється за рахунок підпору рівня ріки греблею з утворенням водоймища, яке також використовується для регулювання стоку (добового, тижневого, сезонного, багаторічного) з метою забезпечення необхідного режиму роботи ГЕС. За рахунок регулювання стоку забезпечується збільшення встановленої та гарантованої потужності ГЕС, кількості вироблюваної електроенергії та економічної ефективності ГЕС. На більшості ГЕС, що знаходяться в експлуатації, у тому числі самих потужних, використана гребельна схема. Така схема застосовується в рівнинних і гірських умовах. При цьому напори на ГЕС залежать від висоти гребель і досягають, наприклад, 280 м на Нурекській ГЕС (Таджикистан) потужністю 2,7 млн.кВт, побудованій в гірських умовах. На ГЕС Ітайпу (Бразилія – Парагвай) потужністю 12,6 млн.кВт висота греблі дорівнює 196 м.
На великих ГЕС у рівнинних умовах напір менше, наприклад на Дністровській ГЕС (Україна) потужністю 0.7 млн. кВт напір дорівнює 54 м, а на Київській ГЕС (Україна) потужністю 0,36 млн.кВт він знижується до 11 м. Така схема використана для всіх ГЕС Дніпровського каскаду в Україні, усіх ГЕС Волзького, Єнісейського та Ангарського каскаду в Росії, для ГЕС каскаду на річках Колумбія та Міссурі у США.
Мал. 2.5. Принципові схеми ГЕС: а – гребельна; б – дериваційна; в – комбінована; 1 – гребля; 2 – будинок ГЕС; 3 – дериваційний канал; 4 – напірний трубопровід; 5 – напірний тунель; 6 – зрівнювальний резервуар; 7 – відвідний тунель; 8 – водоприймач; 9 – природна поверхня берегового схилу
Київська ГЕС
При дериваційній схемі напір на ГЕС утворюється шляхом створення зосередженого перепаду за рахунок відводу води з річки штучним водоводом, в якості якого застосовуються відкриті канали (безнапірна деривація); напірні тунелі або трубопроводи (напірна деривація) (мал. 2.6).
При дериваційній схемі для забору води на ГЕС у більшості випадків у річці зводиться гребля, яка утворює невелике водоймище, що часто виконує добове регулювання.
Дериваційну схему доцільно застосовувати в гірських умовах при більших ухилах і порівняно невеликих витратах, що дозволяє при відносно невеликій довжині дериваційного водоводу одержати великий напір. На с. 283 наведено загальний вигляд ТеребляРикської ГЭС потужністю 27 МВт із напором 215 м, що використовує дериваційну схему з напірною деривацією.
Мал. 2.6. Дериваційна ГЕС із напірною деривацією
Теребля-Рикська ГЕС (за приміщенням ГЕС видно «вихідний портал» тунелю й металевий водовід завдовжки 350 м)
Гідровузол Ялі на річці Сесан, В’єтнам
При дериваційній схемі напори досягають 1000 м і більше. Наприклад, на ГЕС Целльрейн-Зильц (Австрія) потужністю 0,43 млн.кВт напір становить 1259 м, на ГЕС Розеланд (Франція) потужністю 0,5 млн.кВт – 1200 м, на ГЕС Грозіо (Італія) потужністю 0,43 млн.кВт – 590 м.
У випадку комбінованої схеми напір на ГЕС утворюється частково за рахунок підпору рівня ріки греблею й створення водоймища, як при пригребельній схемі, та частково за рахунок деривації, що дозволяє при відповідних природних умовах використовувати переваги обох схем. При комбінованій схемі також можна одержати високі напори на ГЕС. Наприклад, на ГЕС ЧерчиллФолс (Канада) потужністю 5,3 млн. кВт із водоймищем обсягом 32,6 км3, утвореним греблею висотою 32 м, напір становить 318 м; на Інгурській ГЕС (Грузія) потужністю 1,3 млн.кВт із водоймищем обсягом 1,1 км3, утвореним греблею висотою 272 м, максимальний напір становить 404 м, на ГЕС Ялі (В'єтнам) потужністю 0,72 млн. кВт із водоймищем, утвореним греблею висотою близько 60 м, напір становить 190 м, на ГЕС Тхак Мо (В'єтнам) потужністю 0,15 млн.кВт із водоймищем, утвореним греблею висотою 50 м, напір становить 90 м.
Вибір схеми й основних параметрів ГЕС залежить від природних умов ділянки річки й здійснюється на підставі техніко-економічного порівняння варіантів.
- Вступ
- ЧАСТИНА 1. Мистецтво пізнавати навколишній світ
- ЧАСТИНА 2. Розвиток вчення про теплоту, термодинаміку, теплопередачу і теплові машини
- Розділ 1. Теплота
- Розділ 2. Основи термодинаміки
- 2.1. Предмет і метод термодинаміки
- 2.2. Основні поняття і визначення
- 2.3. Перший закон термодинаміки
- 2.4. Другий закон термодинаміки
- 2.5. Поняття ексергії
- 2.6. Третій закон термодинаміки (тепловий закон Нернста)
- 2.7. Ентропія і невпорядкованість (статистичний характер другого закону термодинаміки)
- 2.8. Філософсько-методологічні основи другого закону термодинаміки
- 2.9. Термодинаміка на рубежі ХХІ століття. Стан і перспективи
- Розділ 3. Основи теплопередачі
- Розділ 4. Створення механізмів і машин для спалювання палива та використання теплової енергії
- ЧАСТИНА 3. Розвиток вчення про електрику і магнетизм. Становлення електроенергетики
- Розділ 5. Перші спостереження та експериментальні дослідження електрики і магнетизму. Відкриття основних властивостей і законів електрики
- 5.1. Перші відомості про електрику тертя і магнетизм
- 5.2. Електропровідність. Провідники та ізолятори
- 5.3. Два роди електричних зарядів. Закон Кулона
- 5.4. Електричне поле і його характеристики
- 5.5. Електрична ємність. Конденсатор
- 5.6. Електрична машина тертя. Індукційна машина
- 5.7. Досліди з електричним розрядом. Вивчення атмосферної електрики
- Розділ 6. Вивчення електричного струму. Встановлення основних законів електричного кола
- Розділ 7. Теплова і світлова дія електричного струму. Зародження основ електродинаміки
- Розділ 8. Винахід перших електричних машин. Створення центральних електричних станцій
- Розділ 9. Винахід електродвигунів та електричної тяги
- Розділ 10. Розвиток електротехнологій
- Розділ 11. Створення перших систем передачі й розподілу електричної енергії
- Розділ 12. Об'єднання електричних мереж для паралельної роботи. Створення енергетичних систем
- Розділ 13. Енергетика Росії на початку ХХ століття
- Розділ 14. План ГОЕЛРО – перший у світовій історії план розвитку народного господарства
- Розділ 15. Створення і становлення енергетичної системи України
- Розділ 5. Перші спостереження та експериментальні дослідження електрики і магнетизму. Відкриття основних властивостей і законів електрики
- ЧАСТИНА 4. Становлення атомної енергетики
- Висновок
- Коли б не вони... Хронологія найважливіших відкриттів у галузі енергетики
- Список використаної літератури
- Відомості про авторів