Книга 2. Пізнання й досвід – шлях до сучасної енергетики
8.3. Перспективи розвитку систем, керованих прискорювачами заряджених частинок
В останні роки багато країн вважають перспективним напрямком для генерування енергії та знищення радіотоксичних елементів відпрацьованого палива АЕС створення електроядерних підкритичних систем, що поєднують в собі безпеку експлуатації (Keff<1) і гнучкість управління. Основою цих систем є зовнішнє джерело нейтронів прискорювального типу. Технологія електроядерних систем використовує три основні компоненти: прискорювач заряджених частинок з потужністю пучка порядку часток або одиниць мВт і енергією понад 100 МеВ; підкритичну збірку, що складається з мішеніконвертера прискорених частинок і бланкета з матеріалом, котрий ділиться, для примноження потоку нейтронів від мішеніконвертера; системи охолодження мішеніконвертера і бланкета.
Високострумові прискорювачі вже створюються й основною проблемою є безперервна стабільність пучка прискорених частинок протягом тривалого часу. Технологія охолодження мішені й підкритичної збірки залежить від характеру вирішуваних технологічних завдань і включає всі можливі теплоносії (особлива увага приділяється сплаву Pb–Bi). Коефіцієнт примноження нейтронів зовнішнього джерела підкритичної збірки в деяких концептуальних розробках досягає значень, рівних 200 (Keff = 0,995), що значно знижує вимоги до ефективності генерування нейтронів прискореними частинками різної природи. У зв'язку з цим основою при виборі прискорювача для ядерних систем є його вартість. При існуючих в даний час капітальних витратах на спорудження електроядерних систем для потоків нейтронів зовнішнього джерела до 1017 нейтронів/с перевагу мають система з прискорювачем електронів і фотоядерні процеси генерування нейтронів. Для потоків нейтронів більше 1017 нейтронів/с перевага переходить до прискорювача протонів на енергію 1000 МеВ (мал. 8.4).
Вихід нейтронів із мішені-конвертера і коефіцієнт розмноження підкритичної збірки визначаються розрахунком з використанням ЕОМ-програм, включаючих метод Монте-Карло, й бібліотеки ядерних даних щодо нейтронів й ?-квантів для моделювання проходження цих частинок у матеріалах конструкцій.
Мал. 8.4. Залежність вартості установок для генерування нейтронів у фотоядерних реакціях й реакціях розщеплення
Мал. 8.5. Схема трансмутаційної переробки ВЯП АЕС у рідкосольовому реакторі, керованому прискорювачем електронів: 1 – уран; 2 – відпрацьоване ядерне паливо; 3 – розчин ВЯП, піротехнічна переробка; 4 – РАВ без актиноїдів; 5 – сіль + Рu + МА; 6 – система перемішування; 7 – до сховища РАВ; 8 – електрони; 9 – до парогенератора; 10 – від парогенератора; 11 – вхід пучка електронів до активної зони; 12 – теплообмінник; 13 – корпус реактора
Мал. 8.6. Керована прискорювачем система з рідким ядерним паливом у вигляді солей трансуранових елементів: 1 – графітовий сповільнювач; 2 – бланкет; 3 – пучок протонів; 4 – петля з рідкою сіллю; 5 – рідка сіль; 6 – петля з рідкою сіллю; 7 – теплообмінник; 8 – графітовий відбивач; 9 – рідкометалеве паливо; 10 – область мішені; 11 – переробка; 12 – насос для рідкої солі
Спектр нейтронів зовнішнього електроядерного джерела з урановим конвертером (20% 235U) досить жорсткий (Ен> 1 МеВ), що необхідно для включення до паливного циклу природного урану, торію й трансуранових елементів, ядерна реакція ділення яких має енергетичний поріг вище 1 МеВ.
Дослідження моделей підкритичних збірок показали необхідність наявності в їх конструкції відбивачів нейтронів для попередження їх витоку з активної зони. Коефіцієнт розмноження Keff досить чутливий до таких характеристик матеріалів відбивачів, як альбедо й уповільнююча здатність.
У процесі експлуатації електроядерної системи відбувається вигоряння атомів мультиплікуючого матеріалу в реакціях ділення і утворення шлаків, паразитно поглинаючих нейтрони. Це призводить до зменшення Keff і зниження коефіцієнта множення М = 1/(1–Keff) потоку нейтронів зовнішнього джерела. Для стабільного режиму експлуатації електроядерної системи, відповідної постійній густині потоку нейтронів у підкритичній збірці, необхідно або збільшити інтенсивність зовнішнього джерела (тобто підвищити струм прискорених частинок, що падають на мішень-конвертер), або підтримувати концентрацію подільного матеріалу постійною. Останнє можливе тільки в рідкосольових системах, що дозволяють очищати від шлаків відпрацьоване сольове паливо і заповнити падіння концентрації вигорілого елемента (мал. 8.5).
Утворення шлаків і вигоряння подільних елементів впливають на величину середнього часу життя покоління нейтронів в розмножуючому середовищі, що позначається на динамічних характеристиках підкритичної збірки.
Тому в гетерогенних системах підкритичних збірок пропонується використовувати вигоряючі поглиначі для збільшення оперативного запасу реактивності, компенсації вигоряння подільних елементів й поглинання нейтронів шлаками. Ідеальним варіантом є рівність швидкостей зменшення реактивності через вигоряння шлакування розмножуючого нейтрони матеріалу й збільшення реактивності в результаті вигоряння атомів поглинача. З цією метою пропонується використовувати як вигоряючий поглинач ербій природного складу, котрий бажаніший при тривалій безперервній експлуатації через малий переріз захоплення нейтронів.
У результаті аналізу різних конструкційних рішень для підкритичної системи обрана циліндрична геометрія, за віссю якої розташовується мішень-конвертер заряджених частинок (мал. 8.6).
Робота активної зони електроядерної системи на підкритичному рівні (Keff<1) забезпечує безпеку експлуатації, що виключає протікання самопідтримуваної ланцюгової реакції ділення. При надійному зворотному зв'язку між потужністю підкритичної системи і потужністю пучка прискорювача (мал. 8.7) можна гарантувати бажаний рівень управління електроядерною системою.
Мал. 8.7. Принцип управління електроядерною системою: 1 – прискорювач; 2 – підкритична активна зона; 3 – контроль густини потоку нейтронів; 4 – зворотний зв'язок між інтенсивністю джерела й густиною потоку нейтронів; I (t) – струм пучка електронів, Q – заряд електрона (1,6•10 19 кул); Z – число нейтронів, створених одним електроном, ϕ – важливість джерела; S – зовнішнє джерело нейтронів; Δβ – дефіцит, який необхідно додавати; λ – час життя нейтрона; Λ константа
Ядерне паливо (тепловиділяючі збірки РБМК). Цех збірки ТВЗ, м. Електросталь
- Вступ
- ЧАСТИНА 1. Мистецтво пізнавати навколишній світ
- ЧАСТИНА 2. Розвиток вчення про теплоту, термодинаміку, теплопередачу і теплові машини
- Розділ 1. Теплота
- Розділ 2. Основи термодинаміки
- 2.1. Предмет і метод термодинаміки
- 2.2. Основні поняття і визначення
- 2.3. Перший закон термодинаміки
- 2.4. Другий закон термодинаміки
- 2.5. Поняття ексергії
- 2.6. Третій закон термодинаміки (тепловий закон Нернста)
- 2.7. Ентропія і невпорядкованість (статистичний характер другого закону термодинаміки)
- 2.8. Філософсько-методологічні основи другого закону термодинаміки
- 2.9. Термодинаміка на рубежі ХХІ століття. Стан і перспективи
- Розділ 3. Основи теплопередачі
- Розділ 4. Створення механізмів і машин для спалювання палива та використання теплової енергії
- ЧАСТИНА 3. Розвиток вчення про електрику і магнетизм. Становлення електроенергетики
- Розділ 5. Перші спостереження та експериментальні дослідження електрики і магнетизму. Відкриття основних властивостей і законів електрики
- 5.1. Перші відомості про електрику тертя і магнетизм
- 5.2. Електропровідність. Провідники та ізолятори
- 5.3. Два роди електричних зарядів. Закон Кулона
- 5.4. Електричне поле і його характеристики
- 5.5. Електрична ємність. Конденсатор
- 5.6. Електрична машина тертя. Індукційна машина
- 5.7. Досліди з електричним розрядом. Вивчення атмосферної електрики
- Розділ 6. Вивчення електричного струму. Встановлення основних законів електричного кола
- Розділ 7. Теплова і світлова дія електричного струму. Зародження основ електродинаміки
- Розділ 8. Винахід перших електричних машин. Створення центральних електричних станцій
- Розділ 9. Винахід електродвигунів та електричної тяги
- Розділ 10. Розвиток електротехнологій
- Розділ 11. Створення перших систем передачі й розподілу електричної енергії
- Розділ 12. Об'єднання електричних мереж для паралельної роботи. Створення енергетичних систем
- Розділ 13. Енергетика Росії на початку ХХ століття
- Розділ 14. План ГОЕЛРО – перший у світовій історії план розвитку народного господарства
- Розділ 15. Створення і становлення енергетичної системи України
- Розділ 5. Перші спостереження та експериментальні дослідження електрики і магнетизму. Відкриття основних властивостей і законів електрики
- ЧАСТИНА 4. Становлення атомної енергетики
- Висновок
- Коли б не вони... Хронологія найважливіших відкриттів у галузі енергетики
- Список використаної літератури
- Відомості про авторів