Книга 2. Пізнання й досвід – шлях до сучасної енергетики
2.9. Використання енергії довкілля
Джерелом теплопостачання можуть служити теплові помпи, які перетворюють низькопотенційну теплову енергію довкілля (води, ґрунту, повітря), а також теплові відходи промислових підприємств і комунальних служб в теплову енергію потрібного потенціалу. Перенесення теплоти від джерела низького потенціалу на більш високий температурний рівень відбувається підведенням механічної енергії або додатковим підведенням теплоти.
Мал. 2.31. Схема парокомпресійної теплової помпи: 1 – конденсатор; 2 – дросель; 3 – випарювач; 4 – компресор
Найбільш простою конструкцією є теплова помпа парокомпресійного типу, схема якого наведена на мал. 2.31.
Конструкція парокомпресійної теплової помпи включає два теплообмінних апарата – випарювач, в якому відбувається випарювання рідинного холодильного агенту за рахунок підведення теплоти при невеликому тиску від середовища з низьким потенціалом, і конденсатор, в якому відбувається конденсація пароподібного холодильного агенту при підвищеному тиску віддачею теплоти теплоприймачу. У схемі передбачений компресор для відсмоктування з випарювача і стискання парів холодильного агенту до тиску конденсації.
Рівняння теплового балансу парокомпресійної теплової помпи має вигляд
QB = QH + W, де QB – енергія, яка передається від конденсатора до робочого середовища високого потенціалу; QH – енергія середовища низького потенціалу, яка передається випарювачу; W – механічна енергія, витрачена компресором для стискання холодильного агенту.
Цикл Карно щодо теплової помпи (мал. 2.32) складається з таких процесів:
• ізотермічний процес DC підведення теплоти QDC (QH) на низькому температурному рівні ТН, що відповідає умові теплообміну з довкіллям;
• ізоентропічне стискання СВ, в процесі якого до робочого тіла підводиться робота WCB;
• ізотермічний процес ВА відведення теплоти QBA (QB) на високому температурному рівні ТВ, що відповідає умові теплообміну із середовищем, яке нагрівається;
• ізоентропічне розширення AD, в процесі якого робоче тіло повертає енергію WAD, внаслідок чого до компресора подається зовнішня енергія W, яка дорівнює різниці енергій WCB і WAD.
Мал. 2.32. Цикл Карно і схема ідеальної теплової помпи
Відношення корисної теплоти, відведеної в процесі ВА, до витраченої роботи називають коефіцієнтом перетворення кп теплової помпи
кп = QBA W = TB /(TB – TH).
Практичний інтерес з точки зору енергопостачання становить коефіцієнт використання палива квп, який є відношенням корисної енергії на виході установки QB до кількості енергії Qпал, яке знаходиться в первинному паливі й використане для роботи теплової помпи:
квт = QB Qпал.
Мал. 2.33. Принцип роботи термоелектричного теплової помпи
Чим вище коефіцієнт використання палива, тим ефективніша робота теплової помпи. Іншими словами, ефективність теплової помпи тим вища, чим нижча вартість використаної для приводу компресора механічної або електричної енергії.
Більш складні конструкції аналогічного принципу дії мають теплові помпи абсорбційного і компресійно-резорбційного типів.
Інший принцип роботи мають термоелектричні теплові помпи, дія яких базується на ефекті Пельтьє. Якщо взяти напівпровідниковий пристрій, конструкція якого показана на мал. 2.33, то при пропусканні постійного струму через пристрій на переході n-p виділяється теплота, а на переході p-n – поглинається. Таким чином, зміною напряму електричного струму і його величини можна регулювати величину отриманої теплоти або відповідного охолодження.
Теплові помпи такого типу знаходять широке застосування як кондиціонери в приміщеннях, для підігріву води на фермах і в багатьох інших випадках.
Існують також теплові помпи, дія яких заснована на використанні ефекту Ранка, подвійного циклу Ренкіна, такі, що працюють за циклом Стірлинга, Брайтона та інших типів. Ці теплові помпи мають обмежене застосування і специфічні умови використання.
У цілому теплові помпи дозволяють одночасно вирішувати такі проблеми, як енергозбереження, зменшення ендогенного впливу на довкілля, економію енергетичних ресурсів і покращення умов роботи теплоенергетичних виробництв.
Теплова помпа для опалення будівель – екологічно чистий пристрій
Джерелами низькопотенційної теплоти, які забезпечують енергетично ефективну і економічно доцільну роботу теплопомпових установок, можуть бути:
• грунтова вода, яка зберігає на протязі року постійну температуру на рівні плюс 8–12°С;
• підземний грунт на глибині від 2 до 50 м при температурі плюс 10–14°С;
• морська вода з мінімальною температурою в зимовий період плюс 5–8°С;
• технічна вода систем охолодження ТЕС, АЕС, промислових та інших установок;
• стічні води очисних споруджень населених пунктів тощо.
Застосування теплових помп перспективне в комбінованих схемах в комплексі з іншими технологіями використання відновлювальних джерел енергії (сонячні, вітрові, біоенергетичні) і в локальних системах. Так, грунтові теплові помпи з тепловою потужністю до 16 кВт (к.к.д. до 6%) використовуються для опалення будівель і кондиціювання.
У багатьох розвинених країнах використання теплових помп є одним з ефективних напрямів політики енергозбереження. Значне розповсюдження отримали теплові помпи в локальних системах опалення США (600 тис.), Канади (136 тис.), Швеції (200 тис.), Німеччини (40 тис.), Японії та інших країн, їх потужність швидко зростатиме для теплопостачання (комунального і виробничого) в розвинутих країнах.
За прогнозом Світового енергетичного комітету до 2020 р. використання теплових помп для опалення і гарячого водопостачання складе 75%.
- Вступ
- ЧАСТИНА 1. Мистецтво пізнавати навколишній світ
- ЧАСТИНА 2. Розвиток вчення про теплоту, термодинаміку, теплопередачу і теплові машини
- Розділ 1. Теплота
- Розділ 2. Основи термодинаміки
- 2.1. Предмет і метод термодинаміки
- 2.2. Основні поняття і визначення
- 2.3. Перший закон термодинаміки
- 2.4. Другий закон термодинаміки
- 2.5. Поняття ексергії
- 2.6. Третій закон термодинаміки (тепловий закон Нернста)
- 2.7. Ентропія і невпорядкованість (статистичний характер другого закону термодинаміки)
- 2.8. Філософсько-методологічні основи другого закону термодинаміки
- 2.9. Термодинаміка на рубежі ХХІ століття. Стан і перспективи
- Розділ 3. Основи теплопередачі
- Розділ 4. Створення механізмів і машин для спалювання палива та використання теплової енергії
- ЧАСТИНА 3. Розвиток вчення про електрику і магнетизм. Становлення електроенергетики
- Розділ 5. Перші спостереження та експериментальні дослідження електрики і магнетизму. Відкриття основних властивостей і законів електрики
- 5.1. Перші відомості про електрику тертя і магнетизм
- 5.2. Електропровідність. Провідники та ізолятори
- 5.3. Два роди електричних зарядів. Закон Кулона
- 5.4. Електричне поле і його характеристики
- 5.5. Електрична ємність. Конденсатор
- 5.6. Електрична машина тертя. Індукційна машина
- 5.7. Досліди з електричним розрядом. Вивчення атмосферної електрики
- Розділ 6. Вивчення електричного струму. Встановлення основних законів електричного кола
- Розділ 7. Теплова і світлова дія електричного струму. Зародження основ електродинаміки
- Розділ 8. Винахід перших електричних машин. Створення центральних електричних станцій
- Розділ 9. Винахід електродвигунів та електричної тяги
- Розділ 10. Розвиток електротехнологій
- Розділ 11. Створення перших систем передачі й розподілу електричної енергії
- Розділ 12. Об'єднання електричних мереж для паралельної роботи. Створення енергетичних систем
- Розділ 13. Енергетика Росії на початку ХХ століття
- Розділ 14. План ГОЕЛРО – перший у світовій історії план розвитку народного господарства
- Розділ 15. Створення і становлення енергетичної системи України
- Розділ 5. Перші спостереження та експериментальні дослідження електрики і магнетизму. Відкриття основних властивостей і законів електрики
- ЧАСТИНА 4. Становлення атомної енергетики
- Висновок
- Коли б не вони... Хронологія найважливіших відкриттів у галузі енергетики
- Список використаної літератури
- Відомості про авторів