Книга 2. Пізнання й досвід – шлях до сучасної енергетики
3.2.4. Закони радіоактивного розпаду
Атомні ядра є стабільними лише при певному співвідношенні в них кількості протонів Z та нейтронів N. Це співвідношення приблизно може бути описано емпіричної формулою
де А – масове число (А = Z + N).
З цієї формули випливає, що при малих масових числах (1 < A < 10) кількість протонів приблизно дорівнює кількості нейтронів; при великих масових числах (A >> 10) кількість протонів зростає як корінь кубічний з А; при надлишку кількості нуклонів (відхилення від «смуги стабільності ядер») виникають радіоактивні перетворення, які зменшують ступінь відхилення ядер і стабілізують конфігурацію нуклонів. Можливі канали радіоактивного розпаду материнського ядра систематизовані у наступній схемі.
Возможные каналы радиоактивного распада материнского ядра систематизированы на приведенной выше схеме.
Процеси радіоактивного розпаду мають стохастичний характер. Вони описуються законами теорії ймовірностей. Проте, якщо процес розпаду розглядати за час, який набагато більшийперіодів характерних внутрішніх перетворень, і для об'єкта, що містить велику кількість ядер (макрооб'єкта), то це явище цілком можна описати як детермінований процес.
Якщо у зразку в момент часу t є N радіоактивних ядер, то кількість ядер dN, що розпалися за час dt, буде пропорційно N:
dN = –λNdt , де λ – коефіцієнт пропорційності, який називається постійною радіоактивного розпаду.
При інтегруванні наведеного виразу отримаємо закон радіоактивного розпаду:
N(t) =N0eхр-λt=N0e-λt , де N0 – вихідна кількість радіоактивних ядер в момент часу t = 0.
Постійна радіоактивного розпаду λ визначає іншу, часто використовувану характеристику радіоактивного розпаду – період напіврозпаду T1/2 :
Період напіврозпаду T1/2 – час, протягом якого розпадеться половина радіоактивних ядер, що первісно були у зразку. Після одного періоду напіврозпаду зі 100% атомів радіонукліду залишається тільки 50%, а за наступний такий же часовий цикл із цих 50% атомів залишиться лише 25% і так далі.
Для кожного радіонукліда характерний свій період напіврозпаду. Періоди напіврозпаду різних радіонуклідів варіюють в діапазоні від мільярдних часток секунди до десятків мільярдів років. Зокрема, деякі з продуктів поділу мають періоди напіврозпаду в десятки – сотні років, що являє собою одну з головних проблем сучасної атомної енергетики.
Кількість розпадів, які реєструються в радіоактивному зразку за одиницю часу, називають його активністю.
Важливо відзначити, що кількість енергії, виділеної в результаті ланцюжка радіоактивних розпадів, що перетворюють 1 г урану в свинець, таке ж, як при згорянні 400 кг вугілля.
Активність A характеризує середню кількість ядер, які розпадаються в одиницю часу:
A(t) = λN(t). Згідно з чинною Міжнародною системою одиниць СІ, за одиницю виміру активності приймається бекерель (Бк), названий на честь ученого-фізика А. Беккереля. Один бекерель дорівнює одному розпаду в секунду. Ця одиниця досить зручна для оцінки малих кількостей радіонуклідів. Наприклад, один мікрограм (10-6 грама) радію має активність, рівну 3700 Бк.
Разом з тим до цього часу досить часто при вимірюванні великих активностей використовують позасистемну одиницю активності – кюрі (Кі), введену в практику подружжям Кюрі як міра швидкості розпаду одного грама радію, в якому відбуваються 3,7· 1010 розпадів за секунду. Тому прийнято, що 1 Кі = 3,7 · 1010 розпадів c = 37 ГБк.
Кюрі як одиницю вимірювання часто застосовують при оцінці радіоактивних забруднень, пов'язаних з глобальними випадіннями. Наприклад, обумовлене випробуваннями ядерної зброї випадіння радіонуклідів на поверхню Землі з атмосфери на сьогодні становить близько 0,1 Кі км2.
- Вступ
- ЧАСТИНА 1. Мистецтво пізнавати навколишній світ
- ЧАСТИНА 2. Розвиток вчення про теплоту, термодинаміку, теплопередачу і теплові машини
- Розділ 1. Теплота
- Розділ 2. Основи термодинаміки
- 2.1. Предмет і метод термодинаміки
- 2.2. Основні поняття і визначення
- 2.3. Перший закон термодинаміки
- 2.4. Другий закон термодинаміки
- 2.5. Поняття ексергії
- 2.6. Третій закон термодинаміки (тепловий закон Нернста)
- 2.7. Ентропія і невпорядкованість (статистичний характер другого закону термодинаміки)
- 2.8. Філософсько-методологічні основи другого закону термодинаміки
- 2.9. Термодинаміка на рубежі ХХІ століття. Стан і перспективи
- Розділ 3. Основи теплопередачі
- Розділ 4. Створення механізмів і машин для спалювання палива та використання теплової енергії
- ЧАСТИНА 3. Розвиток вчення про електрику і магнетизм. Становлення електроенергетики
- Розділ 5. Перші спостереження та експериментальні дослідження електрики і магнетизму. Відкриття основних властивостей і законів електрики
- 5.1. Перші відомості про електрику тертя і магнетизм
- 5.2. Електропровідність. Провідники та ізолятори
- 5.3. Два роди електричних зарядів. Закон Кулона
- 5.4. Електричне поле і його характеристики
- 5.5. Електрична ємність. Конденсатор
- 5.6. Електрична машина тертя. Індукційна машина
- 5.7. Досліди з електричним розрядом. Вивчення атмосферної електрики
- Розділ 6. Вивчення електричного струму. Встановлення основних законів електричного кола
- Розділ 7. Теплова і світлова дія електричного струму. Зародження основ електродинаміки
- Розділ 8. Винахід перших електричних машин. Створення центральних електричних станцій
- Розділ 9. Винахід електродвигунів та електричної тяги
- Розділ 10. Розвиток електротехнологій
- Розділ 11. Створення перших систем передачі й розподілу електричної енергії
- Розділ 12. Об'єднання електричних мереж для паралельної роботи. Створення енергетичних систем
- Розділ 13. Енергетика Росії на початку ХХ століття
- Розділ 14. План ГОЕЛРО – перший у світовій історії план розвитку народного господарства
- Розділ 15. Створення і становлення енергетичної системи України
- Розділ 5. Перші спостереження та експериментальні дослідження електрики і магнетизму. Відкриття основних властивостей і законів електрики
- ЧАСТИНА 4. Становлення атомної енергетики
- Висновок
- Коли б не вони... Хронологія найважливіших відкриттів у галузі енергетики
- Список використаної літератури
- Відомості про авторів