Книга 3. Развитие теплоэнергетики и гидроэнергетики
Мал. 4.8. Американська вітроустановка для водопостачання залізниціУ США вітряні млини більше відомі своїм внеском в освоєння і розвиток американського Заходу наприкінці 1800-х років. Вітряні млини були життєво необхідні раннім поселенцям на Великих рівнинах. Вони постачали водою залізницю (мал. 4.8) і худобу в місцях, віддалених від джерел води. Їх використовували також фермери для іригації.
Вітряні млини європейської і голландської конструкцій, що подекуди застосовувалися на східному узбережжі США, в умовах Великих рівнин виявилися малоефективними. Вода в цьому районі залягає глибоко під поверхнею землі й необхідні були більш швидкохідні млини.
Тихохідні млини голландської конструкції гарні для джерел, розташованих близько до поверхні землі. Зіграла немаловажну роль також різниця економічних умов цих двох регіонів. На Великих рівнинах фермерські господарства мали потребу у відносно невеликих обсягах води на багатьох розкиданих по великій площі ділянках. В умовах же голландських низин великі обсяги води перекачувалися на численних ділянках у межах малої площі. Звідси і розходження в економічних розрахунках: монтаж великих голландських вітряних млинів виявився невигідним. Надійний спосіб підкачки води з глибоких колодязів удалося реалізувати за допомогою водонасосного вітряного млина американської конструкції (мал. 4.9), яка згодом змінила навколишній ландшафт. За минулі 100 років американські виробники побудували більше 8 млн. водонасосних вітряних млинів, в основному для забезпечення водою худоби.
У перших конструкціях вітряних млинів лопаті виготовлялися з дерева, при цьому ККД складав 7%. У результаті дослідницької роботи таких піонерів вітроенергетики, як Томас Перрі, який наприкінці 1800-х років здійснив близько 5000 експериментів з різними конструкціями ротору, дерев'яні лопаті були замінені вигнутими металевими лопатями, що дало можливість збільшити ККД до 15% (мал. 4.10).
Широка кривизна лопатей з листового металу дозволяла захоплювати більше повітря і направляти його на задню частину наступної лопаті. Цей каскадний ефект сприяв збільшенню перепаду тиску з однієї сторони лопаті на іншу, поліпшуючи характеристики вітродвигуна. Конструкція Перрі виявилася настільки успішною, що була запозичена багатьма країнами світу. Сьогодні використовуються близько 1 млн. таких вітродвигунів, в основному в Аргентині, США, Австралії і Південній Африці.
Типовий вітродвигун з діаметром 8 футів (26,2 м), який використовується у фермерському господарстві, має продуктивність 1–2 галони на хвилину (0,2–0,5 м3/год) в умовах Великих рівнин. Вітродвигун, що традиційно застосовується у фермерських господарствах, набагато менш економічний у порівнянні із сучасними вітротурбінами через те, що його лопаті не мають дійсно аеродинамічного профілю.
Один із засновників американської електричної індустрії Чарльз Ф. Браш (1849– 1929) свою компанію «Браш електрік» у 1892 році злив з «Едісон дженерал електрік компані». Нова компанія одержала нині широко відому назву «Дженерал електрік компані» (GE).
Мал. 4.9. Водонасосний вітряний млин американської конструкції
Мал. 4.10. Вітродвигун конструкції Т.Перрі
Сам Чарльз Ф. Браш прославився впровадженням генератора постійного струму в громадських електричних мережах, комерційної дугової лампочки і способу виробництва свинцево-кислотних акумуляторів.
Протягом зими 1887–1888 років Браш побудував те, що сьогодні називається першою автоматично керованою вітровою турбіною для виробництва електроенергії. Вона була воістину гігантською – найбільшою в світі. Діаметр ротору дорівнював 17 метрам. Ротор мав виготовлені з кедра 144 лопаті. Турбіна пропрацювала 20 років, протягом яких заряджала батареї в підвалі під нею. Незважаючи на значні розміри турбіни, на ній був установлений генератор потужністю всього 12 кВт. Принцип, який застосовував Браш, – використання соленоїдів, – не зазнавав змін з 1890 року до тієї пори, коли контролер турбіни почав керуватися комп'ютером.
- Введение
- ЧАСТЬ 1. Теплоэнергетика
- Раздел 1. Основные понятия в теплоэнергетике
- Раздел 2. Паровые и водогрейные котлы
- 2.1. Общие сведения, классификация паровых и водогрейных котлов
- 2.2. Органическое топливо и типы топочных устройств для его сжигания
- 2.3. Паровые котлы малой и средней производительности
- 2.4. Паровые энергетические котлы
- 2.5. Паровые котлы энергоблоков ТЭС
- 2.6. Котлы-утилизаторы и энерготехнологические котлы
- 2.7. Создание и усовершенствование водогрейных котлов
- 2.8. Водогрейные котлы малой мощности
- 2.9. Водогрейные котлы для коммунальной энергетики
- 2.10. Водогрейные котлы для централизованного теплоснабжения
- 2.11. Электрокотлы
- 2.12. Современное состояние и направления развития котлостроения
- 2.13. Состояние котельного хозяйства в Украине и направления его модернизации
- Раздел 3. Паровые и газовые турбины
- 3.1. Эволюция паровых турбин и их основные типы
- 3.2. Основные элементы современных паровых турбин
- 3.3. Основы эксплуатации паровых турбин
- 3.4. Состояние паротурбинного оборудования в Украине
- 3.5. Пути совершенствования конструкций паровых турбин в мире
- 3.6. История развития энергетического газотурбостроения
- 3.7. Основные элементы энергетических газотурбинных установок и их назначение
- 3.8. Создание и развитие парогазовых и газопаровых установок, их классификация
- 3.9. Современное состояние стационарного энергетического газотурбостроения и пути его развития
- Раздел 4. Тепловые электростанции
- Раздел 5. Централизованное теплоснабжение крупных городов
- Раздел 6. Перспективы развития тепловой энергетики
- ЧАСТЬ 2. Гидроэнергетика
- Раздел 1. Сооружение первых гидроэлектростанций. Этапы развития гидроэнергетики
- Раздел 2. Гидроэнергетические ресурсы, их использование. Принципиальные схемы, параметры, режимы работы ГЭС и ГАЭС
- 2.1. Энергия и мощность водотоков
- 2.2. Гидроэнергетические ресурсы и их использование
- 2.3. Регулирование речного стока
- 2.4. Принципиальные схемы использования гидравлической энергии на ГЭС
- 2.5. Основные энергетические параметры ГЭС
- 2.6. Принципиальные схемы работы ГАЭС
- 2.7. Основные энергетические параметры ГАЭС
- 2.8. Режим работы ГЭС и ГАЭС в объединенных энергосистемах
- 2.9. Комплексное использование и охрана водных ресурсов
- Раздел 3. Каскады ГЭС. Территориально-производственные комплексы и энергокомплексы
- Раздел 4. Основные типы, условия эксплуатации, режимы работы ГЭС и ГАЭС
- Раздел 5. Технологическое оборудование ГЭС и ГАЭС
- Раздел 6. Перспективы развития гидроэнергетики
- Заключение
- Перечень сокращений
- Список использованной литературы
- Сведения об авторах