Книга 3. Развитие теплоэнергетики и гидроэнергетики
2.6. Котлы-утилизаторы и энерготехнологические котлы
Рациональное использование топливно-энергетических ресурсов, охрана окружающей среды относятся к важнейшим проблемам, стоящим перед человечеством. Высокотемпературные процессы осуществляются в технологических печах (металлургическая, химическая, нефтехимическая и другие отрасли промышленности) при чрезвычайно низком коэффициенте использования органического топлива (20–40%). В итоге эти производства выбрасывают газы, температуры которых превышают иногда 1000°С, токсичные вещества, мелкодисперсную пыль применяемого сырья и другие технологические отходы, которые загрязняют окружающую среду. Поэтому переработка и эксплуатация отходов этих технологических процессов являются важной задачей, выполнение которой возможно на основе использования их теплоты в котлах-утилизаторах или при совместной организации технологического и энергетического процессов в энерготехнологических агрегатах.
Котел-утилизатор (КУ) – паровой или водогрейный котел, не имеющий собственного топочного устройства для сжигания топлива и использующий теплоту отходящих газов технологических промышленных агрегатов различного назначения. Исключение составляют случаи работы котлов-утилизаторов на отходящих газах, содержащих, кроме физической, и химическую теплоту в виде горючих составляющих, которые целесообразно дожечь. Теплота, генерируемая котлом-утилизатором в виде водяного пара, нагретой воды или нагретого воздушного потока, используется в других технологических процессах либо в когенерационных установках для производства электроэнергии или холода.
Важной особенностью отходящих высокотемпературных производственных газов в металлургии и в некоторых других отраслях промышленности является содержание в них полидисперсного уноса мелких частиц, находящихся в твердом, жидком или газообразном состоянии. Этот унос образуется в результате выноса газовым потоком мелких частиц шихты, окалины, расплавленного металла или шлака, а также испарения и возгонки металла в плавильных печах. Вынос жидких частиц технологического расплава наблюдается обычно в период кипения или продувки расплавленного металла. Частичное испарение технологического материала возможно в этих же печах из-за высокого температурного уровня в них.
Энергетическая реализация теплоты отходящих газов в котлах-утилизаторах приводит к существенному повышению коэффициента использования располагаемой теплоты, к снижению температуры выноса технологического сырья в виде пыли и к возможности его улавливания, исключающего или сокращающего выбросы в окружающую среду.
Первые котлы-утилизаторы в СССР были введены в эксплуатацию в 1939 году в виде котлов–охладителей газов (КОГ) с дымогарными трубами. До 1959 года они выпускались Таганрогским котельным заводом, а с 1966 года котлы–охладители газов производятся на Белгородском котельном заводе (БелЭнергомаш).
В 1947 году первый котел–охладитель газов с принудительной циркуляцией воды был установлен за мартеновской печью. Такая их установка позволила повысить коэффициент использования теплоты, увеличить производительность печей (на 5,8 – 18%) и сократить продолжительность плавки (на 6, 14,5%) за счет роста теплового форсирования печей, возможного благодаря запасу разрежения, создаваемого дымососом котлов.
Эффективность использования теплоты отходящих газов в котлах-утилизаторах зависит от температуры отходящих газов, тепловой мощности и режима поступления газов в теплоиспользующую установку. Выход отходящих газов зависит от количества сжигаемого топлива в технологической установке и выхода шихтовых газов, образующихся при термической обработке исходных технологических материалов. Большое количество шихтовых газов образуется, например, при плавке руд цветных металлов, кислородной продувке сталеплавильных конверторов для преобразования чугуна в сталь и др.
Режим поступления газов в котлы-утилизаторы является не менее значащим фактором эффективной реализации их теплоты. В ряде случаев цикличность работы технологической установки создает значительные трудности при использовании газов, как это имеет место при конверторном производстве стали, а иногда эта цикличность становится серьезным препятствием для эффективного применения газового потока.
Выпускаемые котельными заводами котлы-утилизаторы подразделяются на группы по нескольким признакам:
- По температуре продуктов сгорания на входе в котел. По этому признаку котлы-утилизаторы делятся на низкотемпературные (при температурах < 900°C) и высокотемпературные (при температурах >1000°C). Такое деление обусловлено тем, что при температурах < 900°C перенос теплоты от продуктов сгорания происходит главным образом за счет конвекции, а при температурах > 1000°C в большей степени излучением. Кроме этого, происходит изменение агрегатного состояния технологического и топливного уноса, который при температурах > 1100°C содержится в продуктах сгорания преимущественно в жидком состоянии.
- По параметрам пара: производятся котлы низких (P =1,5 МПа, t ≈ 300°С), повышенных (4,5 МПа и 450°С) и высоких (10– 14 МПа и 550°С) параметров.
- По способу организации взаимного движения воды и пара и продуктов сгорания: газотрубные и водотрубные.
- По способу организации движения воды в испарительном контуре водотрубных котлов: котлы с естественной циркуляцией и с многократной принудительной циркуляцией (МПЦ).
- По конструкторскому оформлению компоновочных решений и поверхностей нагрева. По этому признаку котлы-утилизаторы бывают П-образной формы, башенного и горизонтально-туннельного типов со змеевиковыми конвективными поверхностями нагрева в низкотемпературных котлах и радиационно-конвективными в высокотемпературных.
Газотрубные и водотрубные котлы-утилизаторы
Газотрубные котлы-утилизаторы выпускаются как с горизонтальным, так и с вертикальным их расположением и устанавливаются за нагревательными, мартеновскими, обжиговыми и другими печами относительно небольшой мощности. Отличительная особенность такого типа котлов – отсутствие топочного устройства для сжигания топлива. В качестве примера рассмотрим промышленный котелутилизатор для использования тепла газов после печи (рис. 2.16).
Газы после печи имеют температуру 1260°С и поступают в нижнюю часть подъемного газохода котла. В нем находятся экранные настенные поверхности, W-образные трубные ленты и конвективный пакет пароперегревателя. За счет тепла газового потока здесь испаряется часть воды и перегревается пар. В экранных и ленточных поверхностях происходит естественная циркуляция воды и пароводяной смеси. Для выработки электроэнергии из котла-утилизатора поступает пар с расходом до 80 т/ч, давлением 4,5 МПа и температурой 440°С, что обеспечивает электрическую мощность около 8 МВт. Для поддержания постоянного теплового потенциала поступающих газов перед КУ установлен предтопок с газовой горелкой.
Газотрубные котлы-утилизаторы вне зависимости от отрасли промышленности, в которой они применяются, имеют схожее конструкторское оформление испарительной части с естественной циркуляцией воды. Однако следует иметь в виду, что используют их для охлаждения отходящих газов небольших по мощности технологических установок.
Водотрубные котлы-утилизаторы с принудительной многократной циркуляцией (МПЦ) воды в испарительных элементах получили наиболее широкое распространение в различных отраслях промышленности. Наличие многократной принудительной циркуляции позволяет придать испарительным элементам котла любую конфигурацию и ориентацию в пространстве. Это создало предпосылки к изготовлению унифицированных котлов на отходящих газах, поверхности нагрева которых могут быть представлены в виде змеевиковых пакетов. Принципиальная схема такого унифицированного котла представлена на рис. 2.17.
Котел КУ-80 имеет П-образную компоновку. Его испарительная часть состоит из трёх секций, включенных последовательно по потоку продуктов сгорания и параллельно по котловой воде, подаваемой циркуляционным насосом.
Деление испарительной системы на дветри секции, включенные по котловой воде параллельно, позволяет более чем в шесть раз снизить сопротивление испарительной части и, соответственно, мощность циркуляционных насосов.
Питательная вода поступает в котел через водяной экономайзер, после которого подается в барабан котла. Из барабана котловая вода циркуляционным насосом подается через шламоотделитель в три испарительных пакета, включенных параллельно. Пароводяная смесь из испарительных поверхностей нагрева поступает в барабан, в котором происходит отделение пара от воды (сепарация). Отсепарированный пар направляется в пароперегреватель и далее к потребителю.
В зависимости от температуры продуктов сгорания на входе в котел изменяется его паропроизводительность и другие параметры.
При необходимости установки котлаутилизатора над нагревательными печами П-образную компоновку заменяют на башенную или горизонтальную с той же последовательностью расположения поверхностей нагрева по ходу газов. В этом случае отпадает необходимость в громоздких и дорогостоящих газоходах от печи к котлу-утилизатору, в самостоятельной котельной, а кроме того, уменьшаются присосы в газовый тракт холодного воздуха и потери теплоты как в окружающую среду, так и с уходящими из котла газами.
Серия котлов-утилизаторов с параметрами пара давлением 4,5 и 1,8 МПа и температурой 375–400°С выпущена на расход продуктов сгорания от 40·103до 150·103м3/ч с температурой 650–850°С. Котлы могут работать в комплексе с испарительным охлаждением печей или только для использования физической теплоты уходящих из печей продуктов сгорания.
Котлы-утилизаторы в коксохимической промышленности
Использованию физической теплоты раскаленного кокса при его сухом тушении придается большое значение, так как общая экономия условного топлива составляет при этом 110 тыс. тонн на каждый миллион тонн произведенного чугуна.
Первая отечественная промышленная установка для этого была сооружена в 1936 году на Керченском коксохимическом заводе. Строительство опытно-промышленной установки сухого тушения кокса (УСТК) в 1960 г. на Череповецком металлургическом заводе положило начало широкому его внедрению в промышленность.
Рис. 2.18. Котёл-утилизатор типа КСТ-80:1 – экономайзер; 2 – испарительные поверхности нагрева; 3 – пароперегреватель; 4 – барабан котла
Установка сухого тушения кокса (рис. 2.18) состоит из двух основных частей – тушильной камеры и котла-утилизатора. Раскалённый кокс с температурой 1000– 1100°С скиповым подъемником загружается в тушильную камеру через бункер.
Верхняя часть бункера выполняет роль форкамеры–аккумулятора горячего кокса. Накопление кокса в форкамере необходимо
для обеспечения непрерывной работы установки в связи с периодической подачей кокса. Форкамера рассчитана на прием раскаленного кокса от одной печи. Через загруженный в бункер раскаленный кокс продувается снизу вверх инертный газ, который нагревается при этом до≈800°C. Нагретые инертные газы с мелкими частицами кокса поступают через пылеулавливающий бункер в котел-утилизатор. Газы последовательно омывают пароперегреватель, секции испарительных поверхностей нагрева с многократной принудительной циркуляцией и экономайзер. Для утилизации теплоты используются котлы-утилизаторы типа КСТ-80 с верхним подводом инертных газов, паропроизводительностью 25 т/ч пара, давлением 4 МПа и температурой 450°С. Температура уходящих газов после экономайзера~160°C.
Продувка инертных газов через слой раскаленного кокса производится дымососом. Эти газы двигаются по замкнутому контуру: дымосос – тушильная камера – котелутилизатор – дымосос.
Для предварительного приготовления инертных газов достаточно заполнить тушильный бункер раскаленным коксом и включить в работу дымосос. Находящийся в газовом тракте установки воздух вызовет выгорание некоторой части кокса, а образовавшиеся при этом продукты сгорания будут выполнять в дальнейшем роль инертного теплоносителя.
Котлы-охладители конверторных газов
При продувке сталеплавильных конверторов кислородом из них удаляются продукты окисления углерода, состоящие на 90-95% из оксида углерода (СО). Эти газы характеризуются высокой температурой (≈1600°С), низким избытком воздуха (0,05–0,10), значительным содержанием конверторного уноса (до 150 г/м3) и теплотворной способностью~8,2 МДж/нм3. Выход газов циклический; газовыделение начинается через 2–4 минуты после начала продувки, быстро достигает максимума и затем снижается до нуля за 2–3 минуты до завершения продувки. Продолжительность паузы на примере работы 300-тонного конвертора – 43 минуты, а всего цикла 60 минут, то есть продувка продолжается~17 мин. Среднечасовой выход газов для этого конвертора~18·103м3/ч, а максимальный пиковый –150·103м3/ч. Выброс таких газов в атмосферу запрещен. Поэтому охладитель конверторных газов – непременный элемент кислородно-конверторного производства.
В качестве охладителей конверторных газов, применяемых на металлургических заводах Украины, используются в основном паровые радиационно-конвективные котлы с многократной принудительной циркуляцией. Они выполняются однобарабанными, вертикально-водотрубными и имеют П-образную компоновку. На рисунке 2.19 показан поперечный разрез газоходов котла-утилизатора типа ОКГ-100-3А. Этот охладитель конверторных газов рассчитан на переработку~40 тыс. м3/ч конверторных газов. Конверторные газы поступают в охладитель конверторных газов через наклонный газоход в подъемный экранированный газоход, затем поворачивают в переходный и далее в опускной конвективный, в котором размещены последовательно змеевиковые пакеты конвективной испарительной поверхности нагрева и экономайзер. После охладителей конверторных газов продукты сгорания подаются в систему газоочистки, а конверторный унос поступает в бункер под опускным газоходом.
Оксид углерода (СО), содержащийся в значительном количестве в конверторных газах, сжигается в подъемном наклонно-вертикальном газоходе. Воздух, необходимый для горения СО, засасывается дымососом через зазор между горловиной конвертора и наклонным газоходом.
Во всех ОКГ предусмотрена двухступенчатая схема испарения: экранные поверхности нагрева радиационной части котла включены в чистый отсек барабана, а конвективные испарительные поверхности – в солевой. Питательная вода через экономайзер поступает в барабан котла, откуда по трубопроводам через шламоуловители подается циркуляционными насосами в экранные и конвективные поверхности нагрева.
Полученная в этих поверхностях нагрева пароводяная смесь поступает в устройство для сепарации пара. Отсепарированный пар направляется в энергокомплекс конверторного цеха.
На всех охладителях конверторных газов в период паузы и во время продувки конвертора, когда отсутствует газовыделение, предусмотрено дополнительное сжигание газообразного или жидкого топлива (подтопка) в количестве 30–75% среднего выхода конверторных газов.
Существуют охладители конверторных газов без дожигания СО. По мере освоения новых мощностей конверторов разработаны и охладители конверторных газов нового поколения, которые характеризуются применением в поверхностях нагрева мембранных труб, сваренных в панели, обеспечивающих газовую плотность и надежность работы охладителей конверторных газов в условиях цикличности тепловых нагрузок и высокой запыленности газов.
Котлы-утилизаторы, используемые в парогазовых и когенерационных установках
Широкое развитие в последние десятилетия комбинированных парогазовых установок (ПГУ) тепловых электростанций, а также когенерационных установок, имеющих высокий коэффициент полезного действия за счет совместной выработки электрической и тепловой энергии, предопределило необходимость создания для них специальных котлов-утилизаторов.
Котлы-утилизаторы, применяемые в парогазовых установках (рис. 2.20), предназначены для получения пара среднего и высокого давления, который в последующем используется в паровой турбине. Источником энергии, утилизируемой таким котломутилизатором, являются уходящие газы газовой турбины. Конструкция котла-утилизатора парогазовой установки определяется температурой уходящих газов (450–550°С), а также мощностью паровой турбины.
Котел-утилизатор парогазовой установки представляет собой водотрубный барабанный агрегат с конвективными поверхностями нагрева и многократной принудительной циркуляцией. В зависимости от мощности паровой турбины они могут быть как одноконтурными, так и иметь два независимых контура с различными давлениями пара.
Барабанные котлы-утилизаторы предназначены для выработки пара высокого (8 МПа), низкого (0,65 МПа) давления и горячей воды за счет утилизации тепла выхлопных газов, поступающих после газотурбинной установки (ГТУ). Такие парогазовые установки (ПГУ) с газовой турбиной типа V-94.2 мощностью 150 МВт работают на территории России (например на Северо-Западной ТЭЦ в Санкт-Петербурге).
Котел-утилизатор выполнен однокорпусным вертикальной компоновки с принудительной циркуляцией среды в испарительных контурах высокого и низкого давления с подвеской поверхностей нагрева к собственному каркасу через промежуточные металлоконструкции (рис. 2.21).
За счет металлической обшивки котелутилизатор выполнен газоплотным. Пароводяной тракт состоит из отдельных контуров высокого и низкого давления. Контур высокого давления включает экономайзерную, испарительную и пароперегревательную поверхность, контур низкого давления – испарительную и пароперегревательную. Поверхности нагрева котла-утилизатора выполнены из труб с наружным спиральным оребрением. Паропроизводительность контура высокого давления составляет 242 т/ч, низкого – 56 т/ч.
Рабочий диапазон регулирования нагрузки котла-утилизатора составляет 100–50% номинальной.
Регулирование давления и температуры пара в котлоагрегате не предусматривается, так как он должен работать при скользящих параметрах пара, определяемых расходом и температурой газов, поступающих в котёлутилизатор от ГТУ, и паровой турбиной.
В результате путем утилизации тепла уходящих газов ГТУ вырабатывается до 30% полной мощности ПГУ, а к.п.д. установки повышается до 52–54%, а в ряде случаев и до 60%.
Котлы-утилизаторы когенерационных установок утилизируют тепло уходящих газов газовых турбин или поршневых двигателей и предназначены для получения пара, используемого для технологических нужд или подогрева сетевой воды систем теплоснабжения. Они выполняются одноконтурными с принудительной циркуляцией.
Энерготехнологические агрегаты (ЭТА) – это не простое объединение теплотехнической установки с последующим использованием теплоты, как в котлах-утилизаторах, а повышение технологической и энергетической эффективности работы установки при производстве, как минимум, двух товарных продуктов – технологического и энергетического. При создании энерготехнологических агрегатов оптимизируют, как правило, всю систему теплоиспользования начиная с технологической части. В таких установках раздельная работа технологического и энергетического элементов агрегата невозможна. В установках на базе типовых котлов за счет совместного производства двух и более продуктов на одном агрегате достигается новый качественный результат как в технологическом, так и в экономическом аспекте. ЭТА очень широко применяются в химической, целлюлозно-бумажной и металлургической промышленности. Например, производство обесфторенных фосфатов осуществляется в энерготехнологических циклонных агрегатах (ЭТА-ЦФ-7Н) на базе однобарабанного парового котла с естественной циркуляцией. При производительности агрегата по обесфторенному фосфату 150 т/сут паропроизводительность составляет 20–30 т/ч при давлении 4 МПа и температуре перегрева до 450°С. Тепловой к.п.д. энерготехнологической установки составляет 80–85%. Энерготехнологический агрегат ЭТА-ЦФ-7Н вырабатывает три товарных продукта: обесфторенный фосфат, являющийся высокоэффективным кормовым средством и фосфорным удобрением; фтористый натрий (NaF) и энергетический или технологический пар.
В 2006 году в России введен в эксплуатацию энерготехнологической агрегат, представляющий собой модернизированный паровой котел КВТС-20, для переработки бурого угля в кокс. Расчетная производительность агрегата составляет 15 т/ч по углю, 3,5 т/ч по коксу при сохранении номинальной тепловой мощности 20 Гкал/ч по горячей воде.
2.5. Паровые котлы энергоблоков ТЭС
2.7. Создание и усовершенствование водогрейных котлов