Книга 3. Развитие теплоэнергетики и гидроэнергетики
Поставивши запитання про те, звідки все виникає і на що перетворюється, ще старогрецькі філософи шукали основу походження і зміни всіх речей, їх властивостей і стану. Вони вважали, що весь світ складається з чотирьох «елементів» – вогню, води, землі та повітря. Можна було б розглядати землю як приклад твердого стану, воду – рідкого іповітря – газоподібного. А з чим же зіставити четвертий «елемент» – вогонь?
Як відомо, перші три агрегатні стани можуть переходити з одного в інший, особливо при змінах температури. Будь-яке тверде тіло нагріванням можна перевести в рідкий або газоподібний стан, тобто розплавити або безпосередньо випарувати. І навпаки, кожна рідина може стати твердим тілом, якщо її в достатній мірі охолодити.
Такі перетворення мають місце тоді, коли речовина досягає певної температури – точки плавлення. Наприклад, ртуті необхідно –39°С, тоді як залізу 1539°С, а вольфраму біля 3400°С, щоб вони перейшли в рідкий стан. Ще вищими є точки плавлення таких сполук, як карбіди, оксиди і т.п. При температурах вище 6000°С жодна з відомих нам речовин не може існувати як тверде тіло.
Якщо плавлення можна спостерігати неозброєним оком, то перехід рідини в газоподібний стан – випаровування – не завжди помітний, оскільки гази або пара зазвичай є невидимими.
Випаровуються не лише рідини, але й тверді тіла. Так, шматок вольфраму при кімнатній температурі й через тисячу років практично не втратить своєї маси. Якщо ж його помістити у вакуум при температурі біля 3000°С, вольфрам вже через день втратить свою масу (приблизно 1,7 грама з квадратного сантиметра).
Природно, виникає питання: чи є газ остаточним станом матерії при будь-якій високій температурі або він може перейти до нового стану – «ультрагазу?» Такий стан існує, а речовина, яка знаходиться в нім, отримала назву плазми.
Газ характеризується як плазма тоді, коли в нім з'явилися електрично заряджені частинки обох знаків. А вони можуть виникнути в процесі руйнування електронних оболонок газових молекул під впливом високої температури.
Це відбувається таким чином. При зіткненні молекул внаслідок великої сили удару одна або обидві частинки можуть втратити свої зовнішні електрони. При цьому з'являються один вільний електрон та іон. Цей акт є іонізацією. Отже, в процесі іонізації в газі з'являються позитивно і негативно заряджені частинки – іони й електрони. Існування носіїв електричних зарядів в газі перетворює його на плазму, що володіє властивістю електропровідності.
Заряджені частинки можна, наприклад, виявити вже в полум'ї сірника або газового пальника, тобто при порівняно невисоких температурах. Як бачимо, старогрецькі філософи мали рацію, коли інтуїтивно уявляли вогонь четвертим «елементом» світу.
Існують різні способи переведення звичайного газу в стан плазми. Один з них – термічна іонізація – це нагрівання газу до високих температур (декілька тисяч градусів).
Таким чином, ми бачимо, що, впливаючи на тіла теплотою з певною температурою, ми можемо перевести їх з одного агрегатного стану в інший, аж до четвертого стану – плазми.
Але що таке теплота? Розглянемо її природу.
- Введение
- ЧАСТЬ 1. Теплоэнергетика
- Раздел 1. Основные понятия в теплоэнергетике
- Раздел 2. Паровые и водогрейные котлы
- 2.1. Общие сведения, классификация паровых и водогрейных котлов
- 2.2. Органическое топливо и типы топочных устройств для его сжигания
- 2.3. Паровые котлы малой и средней производительности
- 2.4. Паровые энергетические котлы
- 2.5. Паровые котлы энергоблоков ТЭС
- 2.6. Котлы-утилизаторы и энерготехнологические котлы
- 2.7. Создание и усовершенствование водогрейных котлов
- 2.8. Водогрейные котлы малой мощности
- 2.9. Водогрейные котлы для коммунальной энергетики
- 2.10. Водогрейные котлы для централизованного теплоснабжения
- 2.11. Электрокотлы
- 2.12. Современное состояние и направления развития котлостроения
- 2.13. Состояние котельного хозяйства в Украине и направления его модернизации
- Раздел 3. Паровые и газовые турбины
- 3.1. Эволюция паровых турбин и их основные типы
- 3.2. Основные элементы современных паровых турбин
- 3.3. Основы эксплуатации паровых турбин
- 3.4. Состояние паротурбинного оборудования в Украине
- 3.5. Пути совершенствования конструкций паровых турбин в мире
- 3.6. История развития энергетического газотурбостроения
- 3.7. Основные элементы энергетических газотурбинных установок и их назначение
- 3.8. Создание и развитие парогазовых и газопаровых установок, их классификация
- 3.9. Современное состояние стационарного энергетического газотурбостроения и пути его развития
- Раздел 4. Тепловые электростанции
- Раздел 5. Централизованное теплоснабжение крупных городов
- Раздел 6. Перспективы развития тепловой энергетики
- ЧАСТЬ 2. Гидроэнергетика
- Раздел 1. Сооружение первых гидроэлектростанций. Этапы развития гидроэнергетики
- Раздел 2. Гидроэнергетические ресурсы, их использование. Принципиальные схемы, параметры, режимы работы ГЭС и ГАЭС
- 2.1. Энергия и мощность водотоков
- 2.2. Гидроэнергетические ресурсы и их использование
- 2.3. Регулирование речного стока
- 2.4. Принципиальные схемы использования гидравлической энергии на ГЭС
- 2.5. Основные энергетические параметры ГЭС
- 2.6. Принципиальные схемы работы ГАЭС
- 2.7. Основные энергетические параметры ГАЭС
- 2.8. Режим работы ГЭС и ГАЭС в объединенных энергосистемах
- 2.9. Комплексное использование и охрана водных ресурсов
- Раздел 3. Каскады ГЭС. Территориально-производственные комплексы и энергокомплексы
- Раздел 4. Основные типы, условия эксплуатации, режимы работы ГЭС и ГАЭС
- Раздел 5. Технологическое оборудование ГЭС и ГАЭС
- Раздел 6. Перспективы развития гидроэнергетики
- Заключение
- Перечень сокращений
- Список использованной литературы
- Сведения об авторах