Книга 3. Развитие теплоэнергетики и гидроэнергетики
Як відомо, паливо – це джерело теплоти і енергії. Будь-яке паливо можна спалити, але не завжди можна одержати однакову кількість корисних теплоти і роботи. Можливість одержати якомога більшу роботу із тієї самої кількості теплоти – основне завдання технічної термодинаміки. Тому в термодинаміці з'явився термін – роботоздатність.
Термодинамічні дослідження і оцінку енергетичної ефективності процесів перетворення теплоти у роботу зручно здійснювати, користуючись поняттям ексергії. Термін «ексергія» запроваджений З. Рантом у 1957 році й складається із двох частин: «ex» – зовнішній (лат.) і
«erg» – енергія (грец.). Ексергією називають ту максимальну кількість роботи, яку можна одержати від заданої кількості теплоти або речовини, якщо параметри цієї теплоти або речовини привести (шляхом оборотних процесів) у рівновагу із навколишнім середовищем.
Одержати роботу можна лише в нерівноважній системі. Для цього вимагається відмінність її параметрів від параметрів навколишнього середовища. Якщо не відходити досить далеко від практично важливих завдань, то навколишнє середовище – це повітря з незмінними параметрами: температурою Tо, тиском pо.
Поняття ексергії Е виступає мірою цінності у термодинаміці. Ексергія механічної або електричної енергії чисельно дорівнює цій енергії, оскільки вона може бути повністю перетворена у роботу: E=L.
Інакші справи з внутрішньою енергією деякого тіла. Другий закон термодинаміки стверджує, що будь-яке тіло, яке не знаходиться у рівновазі з навколишнім середовищем, має певну ексергію.Мал. 2.4. Діаграми потоків теплоти і ексергії для теплосилової паротурбінної установкиЯкщо у системі є лише джерело теплоти з температурою Т і навколишнє середовище з температурою То, то єдина можливість одержати максимальну роботу, відібравши від джерела теплоту Q, полягає в тому, щоб між джерелом теплоти і навколишнім середовищем здійснити прямий цикл Карно за допомогою якого-небудь робочого тіла. При цьому в роботу буде перетворена частина теплоти, яка дорівнює к.к.д. цього циклу Карно, тобто ексергія теплоти дорівнюватиме
E=Q(1—To/T).
Як бачимо, ексергія теплоти тим вища, чим вища температура джерела теплоти. При температурі навколишнього середовища ексергія теплоти дорівнює нулю. Ця обставина не береться до уваги численними винахідниками запропонованих теплових двигунів, здатних працювати, на їх думку, з використанням теплоти ізотермічного навколишнього середовища.
Крім ексергії теплоти, існує і ексергія потоку речовини, хімічна та інші види ексергії та методики їх визначення (мал. 2.4).
Як видно з діаграми потоків теплоти, основна втрата (55%) – втрата теплоти, що віддається у конденсаторі. Це змушує, на перший погляд, шукати можливості зменшення таких великих втрат саме у цьому вузлі теплосилової установки. Насправді – це низькотемпературна (низькопотенціальна) теплота, ексергія її незначна і використати її непросто.
Ексергетична ж діаграма показує, що втрати роботоздатності в конденсаторі – всього 4%, а основні втрати – у котлі внаслідок необоротних втрат передавання теплоти від гарячого джерела з температурою Тг?1800 К (топка котла) до робочого тіла з температурою Т1≈800 К (пара на турбіну).
Ексергетичний аналіз дозволяє вишукувати шляхи підвищення ефективності роботи теплосилової установки, аналізуючи причини втрати ексергії у вузлах і обґрунтовуючи рекомендації по вдосконаленню циклів теплоенергетичних установок.
Але до ексергетичного аналізу варто відноситись з певною обережністю, пам'ятаючи, що ексергія теплоти може мати практичну цінність, яка дорівнює нулю (при температурі теплоти, близької до температури навколишнього середовища). Слід одночасно оцінювати і витрати, яких доведеться зазнати, щоб використати ексергію теплоти. Тобто необхідно проводити техніко-економічний (термоекономічний) аналіз при розгляді процесів та циклів теплосилових установок.
- Введение
- ЧАСТЬ 1. Теплоэнергетика
- Раздел 1. Основные понятия в теплоэнергетике
- Раздел 2. Паровые и водогрейные котлы
- 2.1. Общие сведения, классификация паровых и водогрейных котлов
- 2.2. Органическое топливо и типы топочных устройств для его сжигания
- 2.3. Паровые котлы малой и средней производительности
- 2.4. Паровые энергетические котлы
- 2.5. Паровые котлы энергоблоков ТЭС
- 2.6. Котлы-утилизаторы и энерготехнологические котлы
- 2.7. Создание и усовершенствование водогрейных котлов
- 2.8. Водогрейные котлы малой мощности
- 2.9. Водогрейные котлы для коммунальной энергетики
- 2.10. Водогрейные котлы для централизованного теплоснабжения
- 2.11. Электрокотлы
- 2.12. Современное состояние и направления развития котлостроения
- 2.13. Состояние котельного хозяйства в Украине и направления его модернизации
- Раздел 3. Паровые и газовые турбины
- 3.1. Эволюция паровых турбин и их основные типы
- 3.2. Основные элементы современных паровых турбин
- 3.3. Основы эксплуатации паровых турбин
- 3.4. Состояние паротурбинного оборудования в Украине
- 3.5. Пути совершенствования конструкций паровых турбин в мире
- 3.6. История развития энергетического газотурбостроения
- 3.7. Основные элементы энергетических газотурбинных установок и их назначение
- 3.8. Создание и развитие парогазовых и газопаровых установок, их классификация
- 3.9. Современное состояние стационарного энергетического газотурбостроения и пути его развития
- Раздел 4. Тепловые электростанции
- Раздел 5. Централизованное теплоснабжение крупных городов
- Раздел 6. Перспективы развития тепловой энергетики
- ЧАСТЬ 2. Гидроэнергетика
- Раздел 1. Сооружение первых гидроэлектростанций. Этапы развития гидроэнергетики
- Раздел 2. Гидроэнергетические ресурсы, их использование. Принципиальные схемы, параметры, режимы работы ГЭС и ГАЭС
- 2.1. Энергия и мощность водотоков
- 2.2. Гидроэнергетические ресурсы и их использование
- 2.3. Регулирование речного стока
- 2.4. Принципиальные схемы использования гидравлической энергии на ГЭС
- 2.5. Основные энергетические параметры ГЭС
- 2.6. Принципиальные схемы работы ГАЭС
- 2.7. Основные энергетические параметры ГАЭС
- 2.8. Режим работы ГЭС и ГАЭС в объединенных энергосистемах
- 2.9. Комплексное использование и охрана водных ресурсов
- Раздел 3. Каскады ГЭС. Территориально-производственные комплексы и энергокомплексы
- Раздел 4. Основные типы, условия эксплуатации, режимы работы ГЭС и ГАЭС
- Раздел 5. Технологическое оборудование ГЭС и ГАЭС
- Раздел 6. Перспективы развития гидроэнергетики
- Заключение
- Перечень сокращений
- Список использованной литературы
- Сведения об авторах