Книга 3. Развитие теплоэнергетики и гидроэнергетики
Цей паливний цикл може бути створений тільки після напрацювання плутонію в урановому паливному циклі з урану-238 в реакторах на теплових нейтронах. Отримуваний з урану-238 плутоній містить ізотопи 239Pu, 240Pu, 241Pu, 242Pu. З них 239Pu й 241Pu діляться тепловими нейтронами, а ізотопи 240Pu і 242Pu тепловими нейтронами не діляться. Енергетична цінність плутонію такого ізотопного складу при «спалюванні» в реакторах на теплових нейтронах приблизно еквівалентна енергетичній цінності урану-235. У реакторах на швидких нейтронах в реакції ділення беруть участь всі ізотопи плутонію, включаючи 240Pu і 242Pu, що підвищує енергетичну цінність плутонію, витягнутого із відпрацьованого палива реакторів на теплових нейтронах, приблизно на 30%.
Плутоній може замінити уран-235 в урановому паливному циклі. У цьому випадку АЕС з реакторами на теплових нейтронах працюватимуть по плутоній-урановому паливному циклу, використовуючи змішане уран-плутонієве МОХ-паливо.
Проте найбільш ефективне використання плутонію в реакторах на швидких нейтронах. На мал. 5.2 наведена схема плутонієвого паливного циклу.
При виготовленні твелів для зон відтворення реакторів на швидких нейтронах використовується природний або збіднений уран (з відвалів заводів зі збагачення палива для реакторів на теплових нейтронах), а для активної зони використовується плутоній, напрацьований в урановому або плутонієвому паливних циклах. Тільки у плутонієвому паливному циклі застосовуються різні за конструкцією й складом паливні елементи (твели) для роботи в активній зоні та в зоні відтворення вторинного палива. При завантаженні активної зони реактора на швидких нейтронах плутонієм виникає надлишок нейтронів для відтворення вторинного ядерного палива (?=2,88). Щоб досягти такого надлишку нейтронів і рівної величини ? при завантаженні активної зони швидкого реактора урановим паливом, необхідне його збагачення ураном235 біля 15%, коефіцієнт відтворення ядерного палива (відношення кількості опромінених ядер вторинного палива до кількості ядер, що поділилися) в реакторах на швидких нейтронах може досягати 1,5–1,7 (теоретично 2,5). Висока енергонапруженість і глибина вигоряння палива, висока температура активної зони (більше 600°С), складність в організації теплознімання знижують значення коефіцієнта відтворення до 1,3–1,4.
Мал. 5.2. Схема плутонієвого циклу з реакторами на швидких нейтронах
На відміну від інших паливних циклів у плутонієвому паливному циклі на швидкість накопичення нового ядерного палива впливає не тільки режим роботи швидкого реактора (коефіцієнт використання встановленої потужності – КВВП), але й час перебування нового палива і його втрати при переробці на підприємствах зовнішнього паливного циклу. Тому ефективність розширеного відтворення ядерного палива визначається часом подвоєння ядерного палива. Для сучасних реакторів на швидких нейтронах час подвоєння ядерного палива складає 15–16 років. Якщо час подвоєння ядерного палива буде менше часу подвоєння потужності атомної енергетики (що працює на такому паливі), то потреба в ядерному паливі із зовнішніх джерел зникає. У цьому випадку потреба в природному урані скоротиться до мінімуму, визначуваного кількістю урану-238 для завантаження зон відтворення з урахуванням різних втрат. На даний час за вартістю хіміко-технологічної переробки вторинного палива і виокремлення з нього плутонію, потребою в природному урані, капітальними витратами на будівництво реакторів на швидких нейтронах і собівартістю електроенергії, що виробляється, плутонієвий паливний цикл значно поступається урановому паливному циклу з реакторами на теплових нейтронах.
- Введение
- ЧАСТЬ 1. Теплоэнергетика
- Раздел 1. Основные понятия в теплоэнергетике
- Раздел 2. Паровые и водогрейные котлы
- 2.1. Общие сведения, классификация паровых и водогрейных котлов
- 2.2. Органическое топливо и типы топочных устройств для его сжигания
- 2.3. Паровые котлы малой и средней производительности
- 2.4. Паровые энергетические котлы
- 2.5. Паровые котлы энергоблоков ТЭС
- 2.6. Котлы-утилизаторы и энерготехнологические котлы
- 2.7. Создание и усовершенствование водогрейных котлов
- 2.8. Водогрейные котлы малой мощности
- 2.9. Водогрейные котлы для коммунальной энергетики
- 2.10. Водогрейные котлы для централизованного теплоснабжения
- 2.11. Электрокотлы
- 2.12. Современное состояние и направления развития котлостроения
- 2.13. Состояние котельного хозяйства в Украине и направления его модернизации
- Раздел 3. Паровые и газовые турбины
- 3.1. Эволюция паровых турбин и их основные типы
- 3.2. Основные элементы современных паровых турбин
- 3.3. Основы эксплуатации паровых турбин
- 3.4. Состояние паротурбинного оборудования в Украине
- 3.5. Пути совершенствования конструкций паровых турбин в мире
- 3.6. История развития энергетического газотурбостроения
- 3.7. Основные элементы энергетических газотурбинных установок и их назначение
- 3.8. Создание и развитие парогазовых и газопаровых установок, их классификация
- 3.9. Современное состояние стационарного энергетического газотурбостроения и пути его развития
- Раздел 4. Тепловые электростанции
- Раздел 5. Централизованное теплоснабжение крупных городов
- Раздел 6. Перспективы развития тепловой энергетики
- ЧАСТЬ 2. Гидроэнергетика
- Раздел 1. Сооружение первых гидроэлектростанций. Этапы развития гидроэнергетики
- Раздел 2. Гидроэнергетические ресурсы, их использование. Принципиальные схемы, параметры, режимы работы ГЭС и ГАЭС
- 2.1. Энергия и мощность водотоков
- 2.2. Гидроэнергетические ресурсы и их использование
- 2.3. Регулирование речного стока
- 2.4. Принципиальные схемы использования гидравлической энергии на ГЭС
- 2.5. Основные энергетические параметры ГЭС
- 2.6. Принципиальные схемы работы ГАЭС
- 2.7. Основные энергетические параметры ГАЭС
- 2.8. Режим работы ГЭС и ГАЭС в объединенных энергосистемах
- 2.9. Комплексное использование и охрана водных ресурсов
- Раздел 3. Каскады ГЭС. Территориально-производственные комплексы и энергокомплексы
- Раздел 4. Основные типы, условия эксплуатации, режимы работы ГЭС и ГАЭС
- Раздел 5. Технологическое оборудование ГЭС и ГАЭС
- Раздел 6. Перспективы развития гидроэнергетики
- Заключение
- Перечень сокращений
- Список использованной литературы
- Сведения об авторах