Книга 3. Развитие теплоэнергетики и гидроэнергетики
В останні десятиріччя проводяться широкомасштабні дослідження практичного використання значного потенціалу течій в морях і океанах, які підрозділяють на неперіодичні, мусонні (пассатні) й припливновідпливні. З них в першу чергу розглядається можливість використання енергії головних неперіодичних течій (Гольфстрим, Куросіо та ін.), сумарний енергетичний потенціал яких за різними методиками оцінюється від 5 до 300 млрд. кВт. Такі різкі розходження в оцінках можна пояснити різницями в методиках розрахунку, відсутністю достатньо обґрунтованих уявлень відносно можливих параметрів використання енергії течій, екологічних наслідків, а також відсутністю практичного досвіду.
Попередньо оцінюється можливість використання до 1–2% енергії течій в морях і океанах без негативних екологічних наслідків. Суттєвими позитивними факторами використання їх енергії є висока забезпеченість їх потужності, закономірність зміни потужності в часі протягом року.
Так, течії Гольфстрім і Куросіо несуть відповідно 83 і 55 млн. м3/с води, а, наприклад, енергетична потужність флоридської течії (частини Гольфстріму) на східному узбережжі США з витратою 30 млн. м3/с оцінюється потужністю біля 20 млн. кВт.
Мал. 2.27. Установка для перетворення енергії океанських течій: 1 – лопатне робоче колесо; 2 – механічна система повороту лопатей; 3 – струмонаправляюча труба; 4 – анкерні розчалки; 5 – якірне кріплення
Також може використовуватися енергія мусонних течій, наприклад Сомалійської течії, яка омиває узбережжя Східної Африки та ін., енергія припливно-відпливних течій.
Запропоновано різні типи потужних енергетичних установок для використання енергії безнапірних потоків океанських течій (мал. 2.27), а також невеликих установок для використання енергії течій в річках і каналах.
У більшості запропонованих установок використовуються лопатеві робочі колеса з вертикальною або горизонтальною віссю обертання, занурені в поток під рівень води. У варіанті установки з розташуванням горизонтальної вісі обертання вздовж потоку робоче колесо має вигляд вітроколеса або колеса осьової гідравлічної турбіни (див. мал. 2.27). Установка розміщується біля дна моря на жорсткій опорі або розкріпляється в потоці за допомогою тросів і якорів.
Наприклад, в проекті використання енергії океанських течій у флоридській заплаві (США) передбачається розміщення 242 підводних установок потужністю 83 МВт кожна.
Недоліком таких установок є низька концентрація енергії, у зв’язку з чим вони характеризуються великими розмірами, високою матеріалоємністю і питомою вартістю.
Окрім установок для використання енергії течій безнапірних потоків, можуть використовуватися установки для перетворення енергії напірних потоків (у трубопроводах систем водопостачання, каналізації тощо). Для цього в трубопроводах можуть позташовуватися агрегати, які включають гідравлічну турбіну і генератор.
- Введение
- ЧАСТЬ 1. Теплоэнергетика
- Раздел 1. Основные понятия в теплоэнергетике
- Раздел 2. Паровые и водогрейные котлы
- 2.1. Общие сведения, классификация паровых и водогрейных котлов
- 2.2. Органическое топливо и типы топочных устройств для его сжигания
- 2.3. Паровые котлы малой и средней производительности
- 2.4. Паровые энергетические котлы
- 2.5. Паровые котлы энергоблоков ТЭС
- 2.6. Котлы-утилизаторы и энерготехнологические котлы
- 2.7. Создание и усовершенствование водогрейных котлов
- 2.8. Водогрейные котлы малой мощности
- 2.9. Водогрейные котлы для коммунальной энергетики
- 2.10. Водогрейные котлы для централизованного теплоснабжения
- 2.11. Электрокотлы
- 2.12. Современное состояние и направления развития котлостроения
- 2.13. Состояние котельного хозяйства в Украине и направления его модернизации
- Раздел 3. Паровые и газовые турбины
- 3.1. Эволюция паровых турбин и их основные типы
- 3.2. Основные элементы современных паровых турбин
- 3.3. Основы эксплуатации паровых турбин
- 3.4. Состояние паротурбинного оборудования в Украине
- 3.5. Пути совершенствования конструкций паровых турбин в мире
- 3.6. История развития энергетического газотурбостроения
- 3.7. Основные элементы энергетических газотурбинных установок и их назначение
- 3.8. Создание и развитие парогазовых и газопаровых установок, их классификация
- 3.9. Современное состояние стационарного энергетического газотурбостроения и пути его развития
- Раздел 4. Тепловые электростанции
- Раздел 5. Централизованное теплоснабжение крупных городов
- Раздел 6. Перспективы развития тепловой энергетики
- ЧАСТЬ 2. Гидроэнергетика
- Раздел 1. Сооружение первых гидроэлектростанций. Этапы развития гидроэнергетики
- Раздел 2. Гидроэнергетические ресурсы, их использование. Принципиальные схемы, параметры, режимы работы ГЭС и ГАЭС
- 2.1. Энергия и мощность водотоков
- 2.2. Гидроэнергетические ресурсы и их использование
- 2.3. Регулирование речного стока
- 2.4. Принципиальные схемы использования гидравлической энергии на ГЭС
- 2.5. Основные энергетические параметры ГЭС
- 2.6. Принципиальные схемы работы ГАЭС
- 2.7. Основные энергетические параметры ГАЭС
- 2.8. Режим работы ГЭС и ГАЭС в объединенных энергосистемах
- 2.9. Комплексное использование и охрана водных ресурсов
- Раздел 3. Каскады ГЭС. Территориально-производственные комплексы и энергокомплексы
- Раздел 4. Основные типы, условия эксплуатации, режимы работы ГЭС и ГАЭС
- Раздел 5. Технологическое оборудование ГЭС и ГАЭС
- Раздел 6. Перспективы развития гидроэнергетики
- Заключение
- Перечень сокращений
- Список использованной литературы
- Сведения об авторах