Бог проявил щедрость,
когда подарил миру такого человека...

Светлане Плачковой посвящается

Издание посвящается жене, другу и соратнику, автору идеи, инициатору и организатору написания этих книг Светлане Григорьевне Плачковой, что явилось её последним вкладом в свою любимую отрасль – энергетику.

Книга 2. Познание и опыт - путь к современной энергетике

9.1. Первые электродвигатели

Нам уже известны способы преобразования механической энергии в электрическую. Но и энергию электрического тока можно преобразовать в энергию движения. Динамомашину, вырабатывающую электрический ток, называют первичной машиной, или генератором, а устройство, принимающее электрический ток и преобразующее его в механическую энергию, называют вторичной электрической машиной, или электродвигателем. При этом преобразование электрической энергии в механическую, как и обратное, происходит не непосредственно, а за счет явления электромагнетизма.

Уже опыты М. Фарадея, проведенные им ещё в 1821 году, можно считать наглядной иллюстрацией принципиальной возможности построения электродвигателя. Исследуя взаимодействие проводников с током и магнитом, он показал, что электрический ток вызывает вращение проводника вокруг магнита или вращение магнита вокруг проводника с током.

В 1833 г. английский ученый У. Риччи создал прибор, в котором магнитное поле образовывалось постоянным неподвижным магнитом. Между его полюсами на вертикальной оси помещался электромагнит. Взаимодействие полюсов постоянного магнита и электромагнита приводило к вращению электромагнита вокруг оси. Направление тока периодически изменялось коммутатором. Вследствие своей примитивной конструкции и незначительной мощности электродвигатель Риччи не мог получить практического применения.

Рис. 9.1. Автоматический прерывательРис. 9.1. Автоматический прерыватель

 

Первые устройства для преобразования электрической энергии в механическую применялись главным образом для получения переменно-возвратного движения в так называемых электрических прерывателях. Основным элементом их является вибрирующий якорь, притягиваемый электромагнитом под действием электрического тока и возвращаемый назад за счет сжатия пружины при разрыве электрической цепи (рис. 9.1). Такие устройства получили достаточно широкое распространение в виде, например, электрических звонков. Но значительно более интересно было преобразовать электрическую энергию во вращательную. Наиболее просто этого можно достичь, прикрепив к вибрирующему якорю шатун, действующий на кривошип вала и производящий при помощи качаний вращательное движение. Примером такой простейшей конструкции может служить электродвигатель Грюэля (рис. 9.2).

Рис. 9.2. Электрический двигатель ГрюэляРис. 9.2. Электрический двигатель Грюэля

 

Увеличивая количество электромагнитов, можно получить значительно более плавное вращательное движение. Две системы электромагнитов первым применил русский ученый Б.С. Якоби, создавший в мае 1834 г. электрический двигатель (рис. 9.3) с вращательным движением якоря, который действовал на принципе притяжения и отталкивания между электромагнитами. В качестве источника питания электромагнитов использовалась батарея гальванических элементов, а для изменения полярности подвижных электромагнитов – коммутатор.

В ноябре 1834 года Якоби представил Парижской академии наук сообщение об этом устройстве. Известие об изобретении Якоби очень быстро распространилось. Сам автор широко демонстрировал свой электродвигатель и подвергал его опробованию для приведения во вращение различных механизмов. Он исходил из законов и представлений Ампера и Фарадея, дополненных собственными исследованиями, проведенными совместно с академиком Э. Ленцем в конце 1830-х годов. В процессе совершенствования двигателя Якоби объединил несколько электродвигателей в один агрегат, расположив неподвижные и вращающиеся магниты в одной плоскости, то есть пошел по пути механического соединения определенного числа элементарных машин. При этом увеличились размеры электродвигателя в вертикальном направлении, а это было удобно для создания опытной судовой установки. В 1838 году Якоби построил первый магнитоэлектрический двигатель, приводящий в движение на реке Неве против течения лодку с четырнадцатью человеками на борту.

Рис. 9.3. Электрический двигатель ЯкобиРис. 9.3. Электрический двигатель Якоби

Одна из петербургских газет 1839 года писала об испытаниях «электрического бота»: «… катер с двенадцатью человеками, движимый электромеханической силой (в 3/4 лошади), ходил несколько часов противу течения, при сильном противном ветре… Что бы ни было впоследствии, важный шаг уже сделан, и России принадлежит слава первого применения теории к практике». Испытания электродвигателя Якоби показали возможность практического применения электродвигателей, но в то же время обнаружили, что при питании их током от гальванических батарей (на боте Якоби вначале было установлено 320 гальванических элементов) механическая энергия получается очень дорогой. Произведенные опыты и теоретическое исследование привели Б.С. Якоби к очень важному выводу: применение электродвигателей находится в прямой зависимости от удешевления электроэнергии, то есть от создания генератора, более экономичного, чем гальванические батареи.

Все электрические двигатели постоянного тока, созданные позднее, были по существу лишь усовершенствованием электродвигателя Якоби.

В конце XIX – начале XX века изобретатели во многих странах пытались совершенствовать систему получения, передачи, превращения электричества в механическую работу и приспособить его для перемещения и поднятия грузов, освещения улиц и прочее. В Европе и Америке наибольшее распространение получили электродвигатели малой и средней мощности, используемые в основном для городского электротранспорта и легкой (например швейной и текстильной) промышленности.

 

Рис. 9.4. Отделение электродвигателей постоянного тока на заводе Шуккерта в НюрнбергеРис. 9.4. Отделение электродвигателей постоянного тока на заводе Шуккерта в Нюрнберге

 

Рис. 9.5. Электродвигатель постоянного тока производства «Немецких электрических заводов» в АхенеРис. 9.5. Электродвигатель постоянного тока производства «Немецких электрических заводов» в Ахене

Рис. 9.6. Мощный электродвигатель постоянного тока швейцарской фирмы «Эрликон»Рис. 9.6. Мощный электродвигатель постоянного тока швейцарской фирмы «Эрликон»

На рис. 9.4 представлен общий вид цеха по производству электродвигателей постоянного тока на заводе Шуккерта в Нюрнберге. Такие электродвигатели в конце XIX века с развитием центральных электрических станций массово устанавливались на крупных заводах Европы и полностью вытеснили дорогой и ненадежный ременной или цепной привод. Лидером по производству электродвигателей постоянного тока в Германии были «Немецкие электрические заводы» в Ахене. Благодаря своей надежности и компактности эти электродвигатели получили большое распространение (рис. 9.5).

В сравнении с другими типами двигателей электродвигатель обладал столь важными преимуществами, что очень быстро стал устанавливаться везде, где только была возможна доставка электрического тока. Прежде всего он отличался легкостью установки, простотой ухода и относительной компактностью в сравнении с другими типами двигателей (например газомоторами) аналогичной мощности. Электродвигатели малой и средней мощности не требовали мощных фундаментов и могли устанавливаться прямо на полу или даже на стенных кронштейнах. Кроме того, при квалифицированном обслуживании эксплуатация их была практически безопасна.

В конце XIX века в Швейцарии серия электродвигателей средней и большой мощности производилась на фирме «Эрликон». При этом на электродвигателях мощностью до 100 л.с. применялся якорь Грамма, а на мощных – до 250 л.с. и более – многополюсный якорь (рис. 9.6). В Америке большое распространение получили электродвигатели небольшой мощности, например двигатели конструкции Франка Спрага (рис. 9.7).

Необходимо отметить, что в начале ХХ века история практического использования электрических двигателей не достигла еще и 15-летнего возраста, но темпы и массовость их применения были очень значительными. Этому способствовали интенсивное строительство центральных городских электрических станций и широко разветвленных распределительных электрических сетей, а также несомненные преимущества электродвигателей в сравнении с паровыми машинами и газомоторами равной мощности. Что касается ухода, то он ограничивался только смазкой подшипников и правильной установкой щеток. Кроме того, с развитием массового применения электрических двигателей центральные городские электрические станции, работавшие в основном в темное время суток для целей электрического освещения, получили возможность значительно более рационально использовать мощности своих генераторов, производя электрическую энергию в дневное время для питания многочисленных электродвигателей. Например, Берлинская центральная электростанция, первоначально созданная в 1884 г. для обеспечения электрического освещения, к концу 1892 г. снабжала электрической энергией 156 электродвигателей постоянного тока общей мощностью в 525 л.с. В следующем году станция снабжала электроэнергией уже 311 электродвигателей мощностью в 1070 л.с., а к 1898 г. общая мощность двигательной нагрузки составила уже 15400 л.с., или 11400 кВт, к которым нужно прибавить еще 2100 кВт двигательной нагрузки электрических железных дорог.

 

Рис. 9.7. Американский электродвигатель средней мощности конструкции СпрагаРис. 9.7. Американский электродвигатель средней мощности конструкции Спрага

 

 Рис. 9.8. Типографский печатный станок с электрическим приводомРис. 9.8. Типографский печатный станок с электрическим приводом

 

Рис. 9.9. Электродвигатели в машинном зале заводаРис. 9.9. Электродвигатели в машинном зале завода

 

 Рис. 9.10. Сушильная центрифуга с электрическим приводомРис. 9.10. Сушильная центрифуга с электрическим приводом

Рис. 9.11. Электрический центробежный насос с двигателем КертингаРис. 9.11. Электрический центробежный насос с двигателем Кертинга

 

Рис. 9.12. Токарный станок с электроприводомРис. 9.12. Токарный станок с электроприводом

Приход ХХ века ознаменовался массовым использованием электропривода постоянного тока в различных отраслях промышленности. На рис. 9.8 показан типографский печатный станок с электрическим приводом, а на рис. 9.9 – общий вид машинного зала завода с установленными электрическими двигателями.

Одно из несомненных преимуществ использования электрических двигателей заключается в возможности повышения коэффициента полезного действия механизма при отказе от неэффективных и ненадежных ременных и цепных передач и переходе на прямой электрический привод.

Рис. 9.13. Электрический воротРис. 9.13. Электрический ворот

Рис. 9.14. Электрический лифтРис. 9.14. Электрический лифт

Особенно значительным это преимущество становится при необходимости использования высокооборотного привода. На рис. 9.10 показана сушильная центрифуга с электрическим приводом производства «Немецких заводов» в Ахене, а на рис. 9.11 – электрический центробежный насос с двигателем Кертинга. Такая конструкция нашла широкое применение при разработке промышленных и пожарных помп, т.е. систем для перекачивания воды.

В промышленных и жилых зданиях широко использовались вентиляторы с электрическим приводом. Применение электроприводу нашлось и при производстве различных станков, машин и подъемных механизмов. На рис. 9.12 показан токарный станок с электроприводом, а на рис. 9.13 – электрический ворот, использовавшийся в различных подъемных приспособлениях, например в лифтах (рис. 9.14), или при устройстве транспортировочных механизмов (рис. 9.15). На рис. 9.16 показан общий вид портового крана грузоподъемностью 150 тонн с электроприводом.

Рис. 9.15. Загрузка корабля с помощью электрического транспортераРис. 9.15. Загрузка корабля с помощью электрического транспортера

Рис. 9.16. Портовый кран грузоподъемностью 150 тонн с электроприводомРис. 9.16. Портовый кран грузоподъемностью 150 тонн с электроприводом

Из области домашнего применения можно отметить электроприводные швейную, сверлильную и даже зубоврачебную машины.

  • Предыдущая:
    Раздел 8. Изобретение первых электрических машин. Создание центральных электрических станций
  • Читать далее:
    9.2. Использование электрической тяги
  •