Книга 4. Развитие атомной энергетики и объединенных энергосистем
З освоєнням нових наукоємких технологій розширюється і ускладнюється коло завдань з дослідження процесів теплопередачі.
Потребує подальшого розвитку теорія складного теплообміну, обумовленого перенесенням тепла конвекцією, випромінюванням і теплопровідністю, турбулентного перенесення тепла, маси і кількості руху в нестаціонарних умовах.
Порівняно новим напрямом в дослідженні завдань конвективного теплообміну є вирішення так званих спряжених задач, коли на відміну від традиційного вивчення теплообміну твердого тіла з потоком рідини розглядається взаємопов'язана задача перенесення тепла в рідинах і твердих тілах.
Такий підхід був застосований вперше в 70–80-х роках минулого століття. Наприклад, при конструюванні теплообмінного устаткування з розвиненою поверхнею (оребрена стінка) зазвичай застосовують інженерні методики теплового і гідравлічного розрахунку, засновані на усереднених по поверхні коефіцієнтах тепловіддачі та гідравлічних опорах, які, як правило, визначаються експериментальним шляхом. Підвищені вимоги до розробки сучасних теплообмінних пристроїв змушують знаходити і розвивати більш уточнені методики розрахунку теплообмінних процесів. Облік інтегральних характеристик течії і теплообміну, на які традиційно спираються інженерні методики, не дозволяє оптимально вибрати розміри оребрення і теплообмінника в цілому. Тому останніми роками розвиваються методи розрахунку теплообмінного устаткування з використанням локальних характеристик, адекватно відображаючих реальні умови течії і теплообміну. Такі характеристики можуть бути отримані при постановці та вирішенні спряжених задач.
У зв'язку з широким впровадженням кріогенної техніки істотно просунулися роботи з дослідження теплообміну випромінюванням при кріогенних температурах стосовно надпровідних пристроїв і кріостатів для створення ефективної вакуумно-порошкової багатошарової ізоляції. Тут розглядається комбінований радіаційно-конвективний теплообмін.
Розробляються уточнені, з використанням комп'ютерних програм методи аналізу теплообміну в топкових пристроях. Розвиваються розрахункові прийоми, які дозволяють отримати повнішу інформацію про тепловий стан топок, що дає можливість поліпшити їх конструктивні рішення і режимний характер роботи.
Проаналізовані нові явища при теплообміні: вільна конвекція у випадку нагріву зверху (вектори потоку тепла і сили гравітації збігаються), термоконвективні хвилі й т.ін. Актуальним залишається детальніше вивчення методів інтенсифікації теплообміну (додавання у потік рідини поверхнево-активних речовин, створення пульсацій рідини, вібрація поверхонь нагріву та ін.).
Розвиток теорії теплопередачі, розробка сучасних інженерних методів розрахунку теплообмінного устаткування залишаються актуальним завданням для переходу до нових наукоємких інноваційних технологій.
- Введение
- ЧАСТЬ 1. Атомная энергетика
- Раздел 1. Развитие атомной энергетики
- Раздел 2. Ядерные реакторы
- Раздел 3. Ядерные энергетические установки
- Раздел 4. Атомные электростанции
- Раздел 5. Топливные циклы атомной энергетики
- Раздел 6. Обеспечение топливом атомной энергетики
- Раздел 7. Перспективные направления развития реакторов и ядерного топливного цикла
- Раздел 8. Реакторы–выжигатели высокорадиотоксичных отходов переработки отработавшего топлива АЭС
- Раздел 9. Возможный вариант развития ядерно-топливного цикла в Украине
- ЧАСТЬ 2. Объединенные энергосистемы и энергообразования
- Раздел 1. Процесс объединения энергетических систем: основные понятия и назначение
- Раздел 2. Межсистемные связи - средство эффективного образования энергообъединений
- Раздел 3. Объединенная энергетическая система Украины
- Раздел 4. Единая энергетическая система Российской Федерации
- Раздел 5. Транснациональные и трансконтинентальные энергосистемные образования
- Заключение
- Перечень сокращений
- Список использованной литературы
- Сведения об авторах