Бог проявил щедрость,
когда подарил миру такого человека...

Светлане Плачковой посвящается

Издание посвящается жене, другу и соратнику, автору идеи, инициатору и организатору написания этих книг Светлане Григорьевне Плачковой, что явилось её последним вкладом в свою любимую отрасль – энергетику.

Книга 4. Развитие атомной энергетики и объединенных энергосистем

3.3. Атомные станции теплоснабжения (АСТ)

Атомная станция теплоснабжения (АСТ) состоит из нескольких автономных блоков единичной мощностью по 500 МВт каждый и способна вырабатывать 860 Гкал/ч тепла в виде воды с температурой 150°С и давлением 20 атм для отопления и горячего водоснабжения жилого района с населением 350 тыс. человек. В атомной станции теплоснабжения используется водо-водяной реактор, в котором замедлителем нейтронов и теплоносителем является обычная вода.

Использование реактора как источника низкопотенциального тепла дает возможность значительно понизить его параметры

  • трехконтурная схема передачи тепла от реактора к потребителю;
  • первый контур полностью герметичен и находится внутри корпуса реактора, циркуляция по контуру – естественная;
  • второй контур герметичен, циркуляция по контуру принудительная при нормальной работе и естественная – в аварийных режимах. Включает в себя паровой компенсатор объема с предохранительным устройством;
  • циркуляция по третьему (сетевому) контуру – принудительная. На сетевом контуре предусмотрен байпас с регулирующим клапаном для изменения параметров сетевой воды;
  • давление в сетевом контуре выше, чем во втором по сравнению с параметрами реактора ВВЭР: рабочее давление первого контура уменьшено в 8 раз (20 атм), температура воды понижена с 300 до 200°С, энергонапряженность активной зоны снижена в 4 раза – от 110 до 27 МВт/м 3.

Рис. 3.43. Принципиальная схема реактора:Рис. 3.43. Принципиальная схема реактора:

Особенностью конструкции реактора АСТ является размещение теплообменников первого и второго контуров в зазоре между прочным герметичным корпусом реактора и внутрикорпусной шахтой, разделяющей потоки горячей воды из активной зоны и потоки охлажденной воды после теплообмена (рис. 3.43). Нагретая в активной зоне вода, как более легкая, поднимается внутри шахты в верхнюю часть реактора, направляется к теплообменникам и, охлаждаясь при передаче тепла воде второго контура, опускается в промежутке между шахтой и корпусом вниз на вход в активную зону.

Все топливные кассеты активной зоны снабжены тяговыми трубами, которые являются их продолжением. Это обеспечивает распределение расхода воды через активную зону по топливным кассетам в соответствии с их мощностью. Непрекращающаяся и не зависящая от внешних источников энергии естественная циркуляция воды в корпусе реактора обеспечивает надежный теплосъем с активной зоны в условиях нормальной эксплуатации, ее охлаждение в аварийных режимах и позволяет отказаться от использования главных циркуляционных насосов в первом контуре теплоносителя.

Реакторная установка атомной станции теплоснабжения передает тепло потребителю по трехконтурной схеме теплообмена. Первый контур циркуляции теплоносителя внутри корпуса реактора предназначен для передачи тепла от активной зоны воде второго контура. Второй (промежуточный) контур предназначен для передачи тепла в третий (сетевой) контур и снабжен принудительной циркуляцией теплоносителя. Третий (сетевой) контур осуществляет подачу тепла потребителю, циркуляция сетевой воды производится с помощью насосов (рис. 3.44).

 

Рис. 3.44. Система барьеров, исключающая поступление радиоактивности к потребителю через тепловую сеть: установка выводится из действия при достижении активности в промежуточном контуре 10 ПДК;  дополнительный барьер – давление промежуточного контура (1,2 МПа) меньше давления сети (2,0 МПа);  вода сетевого контура чище в радиационном отношении, чем вода открытых водоемовРис. 3.44. Система барьеров, исключающая поступление радиоактивности к потребителю через тепловую сеть: установка выводится из действия при достижении активности в промежуточном контуре 10 ПДК; дополнительный барьер – давление промежуточного контура (1,2 МПа) меньше давления сети (2,0 МПа); вода сетевого контура чище в радиационном отношении, чем вода открытых водоемов

 

Рис. 3.45. Ядерный реактор водо-водяного типа для АСТРис. 3.45. Ядерный реактор водо-водяного типа для АСТ

Интегральная компоновка внутрикорпусных конструкций реактора с теплообменниками первого и второго контуров циркуляции теплоносителей позволила осуществить принципиально новое для водо-водяных реакторов техническое решение – разместить реактор во втором прочном корпусе (рис. 3.45). Это позволяет сохранить активную зону реактора под уровнем воды и исключить ее перегрев в случае разгерметизации основного корпуса реактора или его систем, локализовать радиоактивный теплоноситель первого контура. Благодаря многоуровневой системе безопасности эксплуатации АСТ их можно размещать на расстоянии ~5 км от крупных городов.

В настоящее время атомная энергетика используется практически для производства электроэнергии, хотя и существуют станции, отпускающие потребителям теплоту (например Билибинская АТЭЦ на Чукотке) или опресняющие воду (г. Шевченко, Казахстан). Наиболее распространенными и освоенными в промышленном производстве энергетическими ядерными реакторами, получившими широкое применение на АЭС, являются реакторы с водой под давлением без ее кипения ВВЭР (за рубежом PWR – Pressured Water Reactor).

Билибинская атомная теплоэлектроцентральБилибинская атомная теплоэлектроцентраль

Билибинская атомная теплоэлектроцентраль (48 МВт) – это первенец атомной энергетики в Заполярье, уникальное сооружение в центре Чукотки. АТЭЦ работает в изолированном Чаун-Билибинском энергоузле и связана с этой системой линией электропередачи длиной 1000 км. В состав энергоузла помимо БиАТЭЦ входит плавучая дизельная электростанция «Северное сияние» (24 МВт) и Чаунская ТЭЦ (30,5 МВт). Общая установленная мощность системы 80 МВт.

  • Предыдущая:
    3.2. Космические ядерно-энергетические установки
  • Читать далее:
    Раздел 4. Атомные электростанции
  •