Книга 4. Развитие атомной энергетики и объединенных энергосистем
6.3. Использование ядерного топлива в реакторе АЭС
Центральным этапом ЯТЦ является использование ядерного топлива в реакторе АЭС для производства тепловой энергии. Как энергетический аппарат ядерный реактор является генератором тепловой энергии определенных параметров, получаемой за счет деления ядер урана и образуемого в реакторе вторичного топливного элемента плутония (рис. 6.22). Эффективность преобразования тепловой энергии в электрическую определяется совершенством теплогидравлической и электрической схем АЭС.
Особенности сгорания ядерного топлива в активной зоне реактора, связанные с протеканием различных ядерных реакций с элементами топлива, определяют специфику ядерной энергетики, условия эксплуатации АЭС, экономические показатели, влияние на окружающую среду, социальные и экономические последствия.
Эффективность использования ядерного топлива на АЭС с реакторами на тепловых нейтронах характеризуется величиной среднегодовой энерговыработки на 1 т (или 1 кг) загруженного и отработавшего в реакторе топлива – средней глубиной его выгорания (ее размерность – МВт·сут/т). В процессе выгорания уранового топлива в результате протекания ядерных реакций происходит значительное изменение его нуклидного состава.На рисунке 6.23 приведен типичный график этого процесса применительно к проектным условиям активной зоны реактора ВВЭР-1000 при начальном обогащении x =4,4% (44 кг/т) и средней проектной глубине выгорания топлива В=40·10 3 МВт·сут/т (или α =42 кг/т), а на рисунке 6.24 — расчетный график изменения нуклидного состава топлива при x =2% и В=20·10 3 МВт·сут/т в активной зоне реактора РБМК-1000. Видно, что по мере выгорания 235 U в результате радиационного захвата нейтронов ядрами 238 U возникают и накапливаются делящиеся изотопы плутония 239 Pu, 241 Рu и неделящиеся изотопы 240 Рu, 242 Рu, а также 236 U. В топливе происходят, кроме того, процессы образования и распада других трансурановых и трансплутониевых элементов (рис. 6.25), количество которых относительно мало и в экономических расчетах не учитывается.
На рисунке 6.26 приведена зависимость изменения нуклидного состава в урановом топливе реактора PWR, имеющем начальное обогащение 3,44%, от флюенса нейтронов. Расчетная оценка вклада делящихся изотопов плутония (239 Pu и 241 Pu) в суммарную энерговыработку ядерного реактора ВВЭР-1000 составляет более 33%. Этот процесс имеет место и в других реакторах на тепловых нейтронах. Вклад плутония в деление и энерговыработку тем больше, чем выше коэффициент воспроизводства (КВ) плутония и чем больше средняя глубина выгорания топлива.
Существенное значение для технических и экономических расчетов и оценок в ядерной энергетике имеет величина накопления в отработавшем топливе изотопов плутония. Они после извлечения из отработавшего топлива при химической переработке также являются товарной продукцией АЭС.
Отношение массы z* всех или только делящихся тепловыми нейтронами z изотопов накопленного в отработавшем топливе плутония к массе α разделившихся ядер, содержащихся в 1 т отработавшего топлива, принято называть коэффициентом накопления плутония (КН):
КН=z/ α ; KH*=z*/ α,
где z* – масса всех изотопов накопленного в отработавшем топливе плутония (включая убыль 235U за счет превращения в 236U без деления). Для ориентировочного расчета КН можно использовать грaфики изменения нуклидного состава топлива (см. рис. 6.23 и 6.24), построенные на основе ядерно-физических расчетов. Увеличение средней глубины выгорания В сопровождается (табл. 6.13) уменьшением количества плутония в отработавшем топливе, но увеличением его доли в общей энерговыработке реактора. Эта доля тем выше, чем больше значение интегрального КВ (отношения количества образующихся делящихся нуклидов к количеству разделившихся).
Таблица 6.13 Выгорание топлива и накопление плутония в реакторах на тепловых нейтронах
Реактор |
Средняя глубина выгорания топлива, кг/т |
Содержание 235U, кг/т |
Содержание накопительных изотопов плутония, кг/т |
Коэффициент накопления плутония КН в отработавшем топливе |
||
хН |
хК |
всех |
делящихся |
|||
PWR |
30–33 |
33 |
8–11 |
10–10,5 |
7,2–7,4 |
0,20–0,24 |
ВВЭР |
42–43 |
44 |
12 |
10,5 |
7,4–7,1 |
0,17–0,18 |
Тяжеловодный (типа CANDU) |
9–10 |
7,1 |
4 |
4,4 |
3,2 |
0,32–0,36 |
Высокотемпературный газографитовый |
60 |
52 |
10 |
8,7 |
5,8 |
0,10 |
При анализе материального баланса 235 U в ядерном топливе необходимо учитывать его необратимые потери в активной зоне реакторов, вызванные захватом нейтронов изотопом 235 U без деления 235 U+n → 236 U + γ.
Существенная часть 235 U не делится, а превращается в искусственный неделящийся радиоактивный изотоп 236 U. Вероятность образования 236 U из 235 U равна отношению сечения радиационного захвата нейтрона изотопом 235 U (σ n γ =98,36 для Е н =0,0253 эВ) к сумме сечений радиационного захвата и деления (σ ~ 580 барн). Таким образом, в балансе загруженного в активную зону реактора 235 U нужно учитывать не только расход ядер 235 U в процессе его деления, но и убыль (~ 15%) ядер 235 U, необратимо потерянных на образование 236U.
На рисунке 6.27 приведен уровень накопления 236 U в водо-водяном реакторе современной АЭС при различном начальном обогащении топлива в зависимости от глубины его выгорания.
В свою очередь образование 236 U приводит к его расходу в процессе образования новых элементов 237 Np и 238 Pu (см. рис.6.22). Зависимости на рисунке 6.27 учитывают этот процесс. При глубине выгорания 30·10 3 МВт·сут/т в реакторах на тепловых нейтронах образуется 0,35–0,40% 236 U при обогащении топлива ~ 3,4% 235 U.
При содержании в активной зоне ВВР 0,12% 236 U потеря достижимой глубины выгорания составит 10 3 МВт·сут/т, при 0,4% 236 U – 2,5·10 3 МВт·сут/т, при 1% 236 U – 5·10 3 МВт·сут/т. В существующих легководных реакторах для компенсации отрицательного влияния 236 U и получения заданных энергетических характеристик необходимо повысить начальное обогащение топлива 235 U, что увеличивает стоимость ЯТЦ.
Использование ядерного топлива в реакторах АЭС включает следующие основные операции:
- выгрузку, приемку и хранение на складе ТВС свежего топлива, поступившего от заводапоставщика;
- комплектование ТВС для загрузки в реактор вместе со стержнями СУЗ;
- загрузку ТВС в активную зону реактора (начальную или в порядке периодической и частичной перегрузки); эффективное использование топлива в активной зоне реактора (получение заданной выработки в реакторе тепловой энергии).
Отработавшее в реакторе ядерное топливо перегружается в бассейн выдержки, размещенный в реакторном зале, и находится в нем в течение нескольких лет. Такая длительная выдержка позволяет существенно снизить начальную радиоактивность и остаточное тепловыделение ТВС, отбраковать негерметичные сборки и твэлы, чтобы облегчить задачу транспортирования отработавшего топлива с территории АЭС (табл. 6.14).
Из бассейнов выдержки отработавшее топливо перегружается в транспортные контейнеры, установленные на специальных железнодорожных платформах или на других транспортных средствах. Этой операцией завершается на АЭС самая продолжительная — центральная — стадия ЯТЦ. Некоторые АЭС располагают долговременным буферным хранилищем отработавшего топлива или могут содержать отработавшие ТВС в специальных контейнерах, приспособленных для сухого долговременного хранения.
Типы топливного цикла. Существует ряд видов топливного цикла в зависимости от типа загружаемого реактора и от того, что происходит с отработанным топливом, выгруженным из реактора. На рисунке 6.28 показана схема открытого (разомкнутого) топливного цикла.
Отработанное топливо хранится неопределенно длительное время в водном бассейне выдержки на территории АЭС. В связи с этим необходимо обеспечить безопасность при работе с ним, упаковке и пересылке отработанного топлива в постоянное место хранения при использовании государственных хранилищ. В этом цикле не проводится процесс восстановления или обогащения делящихся материалов, находящихся в выгоревшем топливе. На рисунке 6.29 показан цикл, в котором отработанное топливо обрабатывается таким образом, чтобы восстановить только уран. Плутоний и трансурановые элементы в данном цикле рассматриваются как высокоактивные отходы (ВАО).
Уран доставляется обратно на обогатительный завод для того, чтобы увеличить процент обогащения от 0,8 до 3%, что достаточно для повторного его использования в качестве топлива для ВВР. «Отходы» требуют должного обращения, упаковки и транспортировки в место постоянного хранения. Более полный топливный цикл показан на рисунке 6.30. Здесь, кроме урана, извлекается также плутоний. Поскольку плутоний является делящимся материалом, его можно использовать в качестве топлива. Оксид плутония, смешанный с оксидом урана, можно использовать повторно в цикле ВВР. Эта топливная смесь, использованная в опытных сборках в целом ряде коммерческих реакторов, продемонстрировала успешное ее применение в качестве топлива для ВВР.
Таблица 6.14 Изменение удельной активности и тепловыделения в 1 т выгруженного из ВВЭР отработавшего топлива при средней глубине выгорания 33·10 3 МВт·сут/т
Выдержка, год |
Мощность тепловыделения, кВт/т |
Активность, 104 Кu/т |
1 |
10 |
2,3 |
2 |
4,7 |
1,3 |
5 |
1,2 |
0,5 |
10 |
1,0 |
0,32 |
Однако повторный цикл с плутонием не приобрел коммерческого применения из-за ряда помех и ограничений. Большой интерес к рециклу плутония проявили в Японии и Германии. В Японии главным мотивом было обеспечение независимости получения топлива для атомных электростанций. В Германии этим хотели воспользоваться для значительного упрощения удаления высокоактивных отходов.
Также возможно объединение ВВР и быстрых реакторов, основанное на третьем варианте топливного цикла. Плутоний, получаемый из отработанного топлива, может быть использован в качестве первой топливной загрузки быстрого реактора.
Это самое эффективное использование плутония, так как его лучшие качества проявляются в быстрой части спектра нейтронов. Данное направление используется во Франции.
Плутоний, получаемый на перерабатывающих заводах Франции, накапливается для последующего его использования в программе развития быстрых реакторов. Реактор на быстрых нейтронах требует своего собственного топливного цикла, со своей спецификой и особенностями. Эта специфика обусловливается глубоким выгоранием топлива в бридере (в 3 раза и более большим, чем в ВВР). Другой цикл основан на использовании тория, который, хотя и не является делящимся материалом, но превращается в реакторе в 23 U. Торий применялся в демонстрационных атомных станциях с реактором ВВР («Indian Point 1» и «Shippingport»), но ториевый цикл не получил промышленного развития. Ториевый цикл используется в высокотемпературных газовых реакторах (в которых топливо заключено в матрицу из графита).
В настоящее время в связи с интенсификацией работ по совершенствованию реакторов и АЭС в целом изменяются позиции многих стран в отношении выбора типа ЯТЦ. Все больше разработчиков склоняются к выбору замкнутого (закрытого) топливного цикла. С другой стороны, в одном из докладов на конференции МАГАТЭ, проведенной в сентябре 2004 года, где анализировалась ситуация с выбором типа ЯТЦ с учетом растущего спроса на энергию, утверждается, что открытый, или однократный, топливный цикл обладает значительными преимуществами по сравнению с закрытым циклом в отношении расходов на производство, проблемы нераспространения и безопасности эксплуатации топливного цикла. Согласно докладу, в мире достаточно природной урановой руды для того, чтобы обеспечить ввод в строй 1000 новых реакторов в течение ближайших пятидесяти лет. Метод «однократного» использования ядерного топлива останется относительно дешевым и безопасным до тех пор, пока месторождения урановой руды не будут исчерпаны и атомные державы не начнут перерабатывать накопившееся ОЯТ для получения плутония – не встречающегося в природе, искусственного побочного продукта сжигания урана. При этом не анализируется ситуация со стоимостью операций по захоронению ОЯТ и РАО. Однако по мере истощения запасов урановой руды затратность эксплуатации открытого топливного цикла – противоположности закрытого цикла может возрасти. Тем не менее, во избежание неисчислимых рисков, связанных с использованием закрытого цикла, специалисты рекомендуют правительствам и руководителям атомной промышленности ядерных держав продолжать эксплуатацию открытого цикла в предпочтении закрытому циклу из-за высокой стоимости процесса переработки ОЯТ и разработок в области новых термоядерных, или быстронейтронных, реакторов. Авторы доклада настоятельно советуют направить исследования и разработки в области топливного цикла в сторону развития технологий, которые не будут в ходе нормальной операции, то есть операции по мирному применению ядерной энергии, приводить к производству пригодных в вооружениях материалов, включающих уран, расщепляющиеся материалы (такие как плутоний) и малые актиниды. Практика закрытого топливного цикла, осуществляемая в настоящее время в Западной Европе и Японии, не удовлетворяет этому критерию, указывается в докладе. Поэтому, говорят его авторы, анализ топливного цикла, исследования, разработки и испытания должны включать в себя четкую оценку возможного риска распространения ядерных материалов и мероприятия, необходимые для минимизации этого риска. Если все же наиболее вероятным прогнозом будущего ядерной энергетики окажется глобальный рост атомной промышленности, основанной на открытом топливном цикле, тогда, говорят авторы доклада, уже в течение ближайших десяти лет необходимо ввести в действие международные соглашения по хранению отработанного топлива, которые должны в значительной степени сократить потенциальный риск ядерного распространения.
В будущей большой ядерной энергетике на быстрых нейтронах в зоне ядерных реакций должно осуществляться не только деление актиноидов, но и наработка из сырьевого ядерного горючего урана-238 изотопов плутония – прекрасного ядерного горючего. При коэффициенте воспроизводства выше 1 в выгружаемом ядерном горючем можно получить больше плутония, чем его сгорело. Выгружаемое ядерное топливо из быстрых ядерных реакторов должно поступить на радиохимический завод, где его избавят от продуктов деления, поглощающих нейтроны. Затем топливо, состоящее из урана238 и актиноидов (Pu, Np, Cm, Am), достаточных для осуществления цепной ядерной реакции, вместе с добавкой из обедненного урана снова загружается в активную зону ядерно-энергетической установки. В ядерном реакторе на быстрых нейтронах при радиохимической переработке можно сжечь практически весь уран-238.
По мнению авторов доклада, в большой ядерной энергетике будут преобладать ядерные реакторы на быстрых нейтронах. Топливо, выгружаемое из этих реакторов, содержит большое количество изотопов актиноидов (Pu, Np, Cm, Am), для него характерна большая глубина выгорания, а значит, на единицу массы ядерного топлива будет больше продуктов деления.
Еще предстоит создать радиохимические технологии, обеспечивающие:
- ядерную безопасность с учетом значительно большего количества малых актиноидов со своими критическими массами;
- глубокую очистку продуктов деления от актиноидов, чтобы не создавать трудности при их хранении, захоронении и трансмутации;
- максимальное снижение массы технологических отходов;
- более совершенную очистку газов, возникающих при радиохимической переработке, от йода, трития, криптона, радиоактивных аэрозолей;
- радиационную безопасность эксплуатационного персонала;
- получение химических элементов, нужных народному хозяйству, например чистого α -источника;
- возможность многократного использования материалов, находящихся в зоне ядерных реакций и состоящих из ценных металлов (Ni, Cr, Nb, Мо. Ti, W, V), которые приобрели наведенную активность;
- экономически целесообразную радиохимическую переработку, конкурентоспособную по сравнению с добычей природного урана для будущей энергетики.
В настоящее время отработавшее ядерное топливо с четырех российских АЭС (Ново-Воронежской, Балаковской, Калининской, Ростовской), трёх украинских (Южно-Украинской, Хмельницкой, Ровенской) и АЭС «Козлодуй» (Болгария) поступает на хранение в «мокрое» хранилище завода РТ-2 по регенерации ОЯТ на территории ФГУП ГХК г. Железногорска (Россия). По проекту хранилище рассчитано на 6000 тонн, предполагается уплотнить его с возможностью размещения 8600 тонн ОЯТ. Облученные тепловыделяющие сборки (ОТВС) хранятся под слоем воды не менее 2,5 метров над сборкой, что обеспечивает надежную защиту персонала от всех видов радиоактивного облучения. После выдержки отработавшего ядерного топлива в мокром хранилище его будут размещать уже в сухом хранилище ОЯТ (ХОТ-2) общей емкостью 38000 тонн (из них 27000 тонн для хранения ОТВС реакторов РБМК-1000, 11000 тонн – для ОТВС реакторов ВВЭР-1000), строительство которого сейчас идет на комбинате полным ходом и первая очередь будет введена в эксплуатацию в декабре 2009 года. Комплекс хранилища ХОТ-2 обеспечит безопасное долговременное хранение ОЯТ реакторов РБМК-1000 и ВВЭР-1000 и передачу его в дальнейшем на радиохимическую переработку или подземную изоляцию. ХОТ-2 будет оснащен современными системами контроля за радиационной и ядерной безопасностью.
6.2. Основные этапы ядерного топливного цикла
Раздел 7. Перспективные направления развития реакторов и ядерного топливного цикла