Книга 4. Развитие атомной энергетики и объединенных энергосистем
Не менше ніж теплова і світлова, для природодослідників в XIX столітті становила інтерес і електродинамічна дія електричного струму, тобто способи прямого перетворення електричної енергії в роботу.
Раніше було показано, що соленоїд при проходженні через нього струму діє як магніт і притягується або відштовхується від полюсів іншого магніту. Легко припустити, що і два соленоїди, через які проходить струм, діятимуть один на одного подібно до двох магнітів. І, дійсно, таку взаємодію було встановлено і підтверджено дослідами Ампера в 1820 р.
Ампер довів існування взаємодії не тільки паралельних, але і довільно перехрещених провідників, через які проходить струм. При цьому вони чинять один на одного таку дію, що прагнуть стати паралельно один до одного, причому так, щоб струми в них мали однакові напрями.
Величина електродинамічної сили, з якою діють один на одного електричні провідники, залежить від їх взаємного положення, відстані між ними, а також від сили струму, який в них протікає. У загальному випадку ця сила пропорційна добутку обох струмів, що протікають в провідниках.
Ампер вивів теоретично свій основний електродинамічний закон тільки для двох елементів зі струмом, але не для замкнених контурів зі струмом. Першість в теоретичному визначенні електродинамічної сили струму в замкненому контурі належить Вільгельму Веберу.
Подальші досліди Вебера показали, що дія електродинамічної сили збільшується, якщо замість прямого провідника використовувати спіральне намотування. Цей ефект був використаний в конструкції першого приладу для вимірювання електродинамічної сили струму – електродинамометра. На мал. 7.11 показаний загальний вид електродинамометра для вимірювання слабких струмів, а на мал. 7.12 – загальний вид крутильного електродинамометра для вимірювання сильних струмів.
Вільгельм Едуард Вебер (1804–1891) – німецький фізик, член-кореспондент Берлінської академії наук. Його роботи присвячені електромагнетизму, акустиці, теплоті, молекулярній фізиці, земному магнетизму. У 1833 році побудував перший в Німеччині електромагнітний телеграф. Він розробив теорію електродинамічних явищ і встановив закон взаємодії рухомих зарядів (1848). У 1846 році вказав на зв'язок сили струму з густиною електричних зарядів і швидкістю їх впорядкованого переміщення. Винайшов ряд фізичних приладів, зокрема електродинамометр.
Мал. 7.11. Електродинамометр для вимірювання слабких струмів
Мал. 7.12. Крутильний електродинамометр для вимірювання сильних струмів
В ознаменування видатних заслуг Вебера його ім’ям була названа одиниця електромагнітного потоку.
Не заглиблюючись в подробиці конструкції електродинамометрів, необхідно відзначити, що вони були першими точними приладами для вимірювання електродинамічної сили переважно змінного струму, який одержав пізніше значно ширше розповсюдження, про що буде сказано нижче.
- Введение
- ЧАСТЬ 1. Атомная энергетика
- Раздел 1. Развитие атомной энергетики
- Раздел 2. Ядерные реакторы
- Раздел 3. Ядерные энергетические установки
- Раздел 4. Атомные электростанции
- Раздел 5. Топливные циклы атомной энергетики
- Раздел 6. Обеспечение топливом атомной энергетики
- Раздел 7. Перспективные направления развития реакторов и ядерного топливного цикла
- Раздел 8. Реакторы–выжигатели высокорадиотоксичных отходов переработки отработавшего топлива АЭС
- Раздел 9. Возможный вариант развития ядерно-топливного цикла в Украине
- ЧАСТЬ 2. Объединенные энергосистемы и энергообразования
- Раздел 1. Процесс объединения энергетических систем: основные понятия и назначение
- Раздел 2. Межсистемные связи - средство эффективного образования энергообъединений
- Раздел 3. Объединенная энергетическая система Украины
- Раздел 4. Единая энергетическая система Российской Федерации
- Раздел 5. Транснациональные и трансконтинентальные энергосистемные образования
- Заключение
- Перечень сокращений
- Список использованной литературы
- Сведения об авторах