Книга 5. Електроенергетика та охорона навколишнього середовища. Функціонування енергетики в сучасному світі
2.6. Використання гідравлічної енергії течій
В останні десятиріччя проводяться широкомасштабні дослідження практичного використання значного потенціалу течій в морях і океанах, які підрозділяють на неперіодичні, мусонні (пассатні) й припливновідпливні. З них в першу чергу розглядається можливість використання енергії головних неперіодичних течій (Гольфстрим, Куросіо та ін.), сумарний енергетичний потенціал яких за різними методиками оцінюється від 5 до 300 млрд. кВт. Такі різкі розходження в оцінках можна пояснити різницями в методиках розрахунку, відсутністю достатньо обґрунтованих уявлень відносно можливих параметрів використання енергії течій, екологічних наслідків, а також відсутністю практичного досвіду.
Попередньо оцінюється можливість використання до 1–2% енергії течій в морях і океанах без негативних екологічних наслідків. Суттєвими позитивними факторами використання їх енергії є висока забезпеченість їх потужності, закономірність зміни потужності в часі протягом року.
Так, течії Гольфстрім і Куросіо несуть відповідно 83 і 55 млн. м3/с води, а, наприклад, енергетична потужність флоридської течії (частини Гольфстріму) на східному узбережжі США з витратою 30 млн. м3/с оцінюється потужністю біля 20 млн. кВт.
Мал. 2.27. Установка для перетворення енергії океанських течій: 1 – лопатне робоче колесо; 2 – механічна система повороту лопатей; 3 – струмонаправляюча труба; 4 – анкерні розчалки; 5 – якірне кріплення
Також може використовуватися енергія мусонних течій, наприклад Сомалійської течії, яка омиває узбережжя Східної Африки та ін., енергія припливно-відпливних течій.
Запропоновано різні типи потужних енергетичних установок для використання енергії безнапірних потоків океанських течій (мал. 2.27), а також невеликих установок для використання енергії течій в річках і каналах.
У більшості запропонованих установок використовуються лопатеві робочі колеса з вертикальною або горизонтальною віссю обертання, занурені в поток під рівень води. У варіанті установки з розташуванням горизонтальної вісі обертання вздовж потоку робоче колесо має вигляд вітроколеса або колеса осьової гідравлічної турбіни (див. мал. 2.27). Установка розміщується біля дна моря на жорсткій опорі або розкріпляється в потоці за допомогою тросів і якорів.
Наприклад, в проекті використання енергії океанських течій у флоридській заплаві (США) передбачається розміщення 242 підводних установок потужністю 83 МВт кожна.
Недоліком таких установок є низька концентрація енергії, у зв’язку з чим вони характеризуються великими розмірами, високою матеріалоємністю і питомою вартістю.
Окрім установок для використання енергії течій безнапірних потоків, можуть використовуватися установки для перетворення енергії напірних потоків (у трубопроводах систем водопостачання, каналізації тощо). Для цього в трубопроводах можуть позташовуватися агрегати, які включають гідравлічну турбіну і генератор.
- Вступ
- ЧАСТИНА 1. Відновлювальна нетрадиційна енергетика
- Розділ 1. Загальні відомості про відновлювальні нетрадиційні джерела енергії
- Розділ 2. Джерела відновлювальної нетрадиційної енергетики
- Розділ 3. Перспективи розвитку відновлювальної нетрадиційної енергетики
- ЧАСТИНА 2. Енергозбереження
- ЧАСТИНА 3. Електроенергетика та охорона навколишнього середовища
- Розділ 1. Історія охорони навколишнього середовища
- Розділ 2. Вплив теплоенергетики на навколишнє середовище
- Розділ 3. Атомна енергетика та навколишнє середовище
- Розділ 4. Вплив гідроенергетичних об’єктів на навколишнє середовище
- 4.1. Особливості взаємодії гідроенергетичних об’єктів з навколишнім середовищем
- 4.2. Фактори впливу гідроенергетичних об’єктів на навколишнє середовище
- 4.3. Екологічні вимоги з охорони навколишнього середовища в період спорудження гідроенергетичних об’єктів
- 4.4. Екологічні вимоги з охорони навколишнього середовища при експлуатації гідроенергетичних об’єктів
- 4.5. Моніторинг навколишнього середовища
- Розділ 5. Відновлювальна нетрадиційна енергетика та охорона навколишнього середовища
- Розділ 6. Екологічні аспекти впливу електричних полів ліній електропередач надвисокої напруги на навколишнє середовище
- ЧАСТИНА 4. Організаційно-правові та економічні аспекти функціонування енергетики
- Розділ 1. Енергетична безпека
- Розділ 2. Законодавство, що регулює відносини в паливно-енергетичному комплексі
- Розділ 3. Світовий досвід організації ринків електричної енергії
- Розділ 4. Моделі організації ринків електроенергії
- Розділ 5. Розвиток ринкового реформування електроенергетики України
- Розділ 6. Сучасні автоматизовані системи контролю та обліку енергоресурсів (АСКУЕ)
- ЧАСТИНА 5. Основні тенденції розвитку світової енергетики
- Післямова
- Перелік скорочень
- Використана література
- Відомості про авторів