Книга 5. Електроенергетика та охорона навколишнього середовища. Функціонування енергетики в сучасному світі
3.5. Шляхи удосконалення конструкцій парових турбін у світі
Вплив ефективності парової турбіни і котла на к.к.д. електростанції різний. Якщо шляхом удосконалення турбіни вдається збільшити її потужність на 1% при тій же витраті теплоти, то це буде еквівалентно збільшенню к.к.д. ТЕС також на 1%. Якщо ж на 1% зекономити витрату палива у котлі на виробіток тієї ж кількості теплоти, то к.к.д. ТЕС зростає тільки на 0,4%, оскільки к.к.д. перетворення теплоти в корисну роботу знаходиться на рівні 40%. Тому удосконалення саме турбіни є найбільш дієвим шляхом підвищення економічності ТЕС в цілому: він завжди дає позитивний результат поза залежністю від параметрів пари, теплової схеми, умов експлуатації і т.п. Підвищення економічності паротурбінних установок тісно пов’язане з підвищенням к.к.д. енергетичного обладнання, в тому числі самої парової турбіни, на основних режимах роботи за рахунок удосконалення проточних частин ЦВТ, ЦСТ, ЦНТ, зменшення втрат на змінних режимах і т.п.
Одним із найсуттєвіших способів підвищення питомої потужності й економічності парової турбіни є підвищення параметрів паросилового циклу. Ефективність цього заходу можна проілюструвати на прикладі енергоблоку потужністю 510 МВт німецької ТЕС «Стаудінгер-5», що працює на кам’яному вугіллі. К.к.д. енергоблоку досягнув 43% при параметрах пари по котлу 26,2 МПа і 545°С. Температура проміжного перегріву пари і охолоджуючої води складає, відповідно, 565 і 18°С. Збільшення параметрів пари до 27 МПа і 580°С при температурі проміжного перегріву пари 600°С і вакуумі в конденсаторі 3,5 кПа дозволить, за оцінками експертів, отримати к.к.д. енергоблоку 45%. Економія палива при цьому досягає 20% У даний час практично всі провідні турбінобудівельні фірми світу створюють парові турбіни супернадкритичних параметрів (СНКП). Історія освоєння СНКП нараховує вже майже 40 років. Вона почалась зі створення в США енергоблоку «Едістоун-1» потужністю 325 МВт на параметри пари 35,9 МПа, 648°С/565°С/565°С. Експлуатація турбоагрегатів на СНКП, побудованих в 50–60-ті роки ХХ століття, внесла серйозний науково-технічний вклад в розвиток світової теплоенергетики. Деякі агрегати вже виробили свій ресурс і виведені з експлуатації, але інші продовжують працювати. Наприклад, енергоблок «Едістоун-1» з дещо пониженими відносно проектних значеннями початкових параметрів (33,62 МПа, 609°С) експлуатується і в даний час, хоча термін служби його перевищує вже 40 років.
У СССР турбіна СКР-100 на супернадкритичні параметри пари 29,4 МПа і 650°С була спроектована і виготовлена у ВАТ «Турбоатом» (тоді ХТГЗ) в 1961 році й успішно експлуатувалась впродовж багатьох років в якості передвключеної на Каширській ДРЕС.
Першим енергоблоком СНКП нового покоління по праву повинен вважатися енергоблок «Кавагое-1» (Японія) на параметри пари 30,5 МПа і 566°С, промислова експлуатація якого почалась з 30 червня 1989 року.
У квітні 1993 року прийнятий в експлуатацію енергоблок «Хекінен-3» (Японія) потужністю 700 МВТ на параметри пари 25 МПа, 538°С/593°С. При розробці парової турбіни блоку були використані всі останні досягнення в області матеріалів, аеродинаміки і технології, а також досліджень систем охолодження на енергоблоці Вакамацу.
У даний час світова теплоенергетика вже зробила реальні кроки з масового переходу до виготовлення турбоустановок на супернадкритичні параметри пари (СНКП): 30 МПа, 600°С, а потім 35 МПа і 650°С.
Важливими розробками в області турбінобудування, пов’язаними з удосконаленням проточних частин парових турбін, є: оптимізація зазорів проточної частини, меридіональне профілювання ступенів парової турбіни, застосування модернізованих конструкцій лабіринтових і кінцевих ущільнень, організація оптимальної схеми вологовидалення останніх ступенів парових турбін, перехід до нового типу облопачування із суцільнофрезерованими бандажами. Покращення роботи кінцевих ущільнень сучасних парових турбін забезпечує надійну, економічну і маневрену роботу турбоагрегату. Аеродинамічна досконалість турбіни досягається за рахунок застосування лопаток складної конфігурації, в тому числі й так званих «шаблевидних» лопаток, шляхом розробки проточної частини підвищеної пропускної здатності, використанням облопачування зі збільшенням економічності, аеродинамічним удосконаленням вихлопного патрубка циліндра низького тиску парової турбіни, застосуванням суміщених циліндрів високого і середнього тиску.
Шаблевидні соплові лопатки. Традиційно соплові лопатки виконують прямими і встановлюють їх радіально, що спрощує технологію виготовлення діафрагм. Шаблевидними лопатками називаються зігнуті лопатки, які нагадують за зовнішнім виглядом шаблю (в закордонній літературі використовуються терміни «бананова» і «тривимірна»). У ПТУ шаблевидні лопатки використовують поки тільки в соплових решітках.
Шаблевидні соплові лопатки вперше запропоновані у 1962 році в СССР на кафедрі парових і газових турбін МЕІ професором М.Є. Дейчем і сьогодні академіком РАН Г.А. Філіпповим. Вони були вперше використані в потужних турбінах фірмою «Siemens» в середині 80-х років минулого століття. Зараз їх використовують всі провідні світові виробники турбін, крім виробників країн СНГ.
За різними оцінками підвищення економічності ступеня при використанні шаблевидних лопаток складає 1,5–2,5%. Найбільш ефективним їх застосування є для останніх ступенів ЦНТ потужних парових турбін, оскільки потужність цих ступенів складає приблизно 10 МВт для турбін ТЕС, сумарна кількість таких ступенів у турбіні 6–8. Якщо всі ступені ЦНТ виконати з шаблевидними сопловими лопатками, то к.к.д. ЦНТ зросте на 1,5–2,5%, що з врахуванням частки виробітку потужності в ЦНТ дасть виграш в економічності всієї турбіни в 0,5–0,8%. Виграш при використанні шаблевидних лопаток досягається за рахунок зменшення частки пари, що протікає через кореневу і периферійну зони ступеня.
Меридіональне профілювання. Перші ступені парових турбін, особливо на надкритичні параметри пари, мають дуже малу висоту соплових і робочих лопаток. Для підвищення к.к.д. таких решіток ще в 60-ті роки ХХ століття в МЕІ запропоновано так зване меридіональне профілювання соплових каналів, за якого верхній (меридіональний) обвід каналу виконується не циліндричним або конічним, а звужуючим.
Меридіональне профілювання вперше було досліджено в МЕІ, і різні типи решіток випробувані в експериментальній турбіні. Для малих висот решіток (менше 25 мм) меридіональне профілювання дає відносне підвищення к.к.д. ступеня більше 2%, а для висоти 10 мм відносне підвищення к.к.д. складає близько 3%. Промислове застосування меридіонального профілювання здійснено в 90-х роках фірмами «Toshiba» і «General Electric». Для реалізації меридіонального профілювання вимагається технологія виготовлення соплових решіток з фігурним (нециліндричним і неконічним) периферійним обводом.
Збільшення кільцевої площі виходу пари із турбіни. Цей захід призводить до зменшення втрат з вихідною швидкістю, пропорційних квадрату площі виходу. Максимальну площу виходу в 11,3 м2 мала до недавнього часу турбіна ЛМЗ К-1200-240, робоча лопатка останнього ступеню якої має довжину 1,2 м при середньому діаметрі 3 м. Ця титанова лопатка створена більше 20 років тому і довгий час вона була світовим рекордсменом. Декілька років назад фірма «Siemens» створила турбіну з площею виходу 12,5 м2 при довжині лопатки 1143 мм.
Характерним прикладом доцільності використання довшої лопатки останнього ступеня і переходу на шаблевидні лопатки може служити модернізація турбіни пиловугільного енергоблоку ТЕС «Enstedvarker» (Данія), яка дозволила збільшити її потужність з 630 до 660 МВт, тобто зменшити питому витрату тепла на 4,6%, що еквівалентно економії 60 тис. т вугілля на рік з відповідним зменшенням шкідливих викидів у навколишнє середовище.
Збільшення довжини робочих лопаток останніх ступенів – один із типових заходів підтримки економічності морально старіючих турбін. На жаль, схожі заходи для наших турбін не реалізовані, хоча є повноцінні розробки, наприклад для турбін потужністю 200 МВт.
Застосування сучасних систем технічної діагностики турбоагрегату включає: вібродіагностику турбоагрегату і живильного турбонасосу, діагностику перемінних режимів експлуатації і прогнозування зміни параметрів у процесі пускових режимів, діагностику техніко-економічних показників у процесі експлуатації, діагностику теплових розширень елементів турбоагрегату, діагностику технічного стану кінцевих ущільнень, діагностику теплового і напружено-деформованого стану високотемпературних елементів парових турбін і прогнозування ресурсних показників енергетичного обладнання.
Контроль якості зварювання ротора парової турбіни
Розділ 2. Вплив теплоенергетики на навколишнє середовище
3.1. Загальні відомості про атомну енергетику, радіоактивність та вплив АЕС на навколишнє середовище