Книга 5. Электроэнергетика и охрана окружающей среды. Функционирование энергетики в современном мире
Для аналізу великого кола явищ і процесів, розв'язання багатьох практичних завдань більш продуктивним виявляється застосування методів термодинаміки. Термодинаміка вивчає загальні властивості тіл і різні процеси в них, що супроводжуються перетворенням енергії, без використання якої небудь певної моделі будови речовини і без висловлювання припущень щодо законів взаємодії частинок, з яких складається тіло.
Термодинаміка – один із розділів фізики, що складається із найбільш загальних фізичних теорій. ЇЇ метод дослідження і закони використовуються у самих різних галузях науки: в теоретичній фізиці та фізиці твердого тіла, у фізичній хімії, металургії і металознавстві, у теорії теплових машин і в біології.
Термін «термодинаміка» введено в науку у 1854 році англійським фізиком Уїльямом Томсоном (1824–1907), який за видатні наукові досягнення одержав титул лорда Кельвіна. Термін складено із грецьких слів thermos – теплота и dynamikos – силовий. І за початковим значенням назви, і за змістом це наука про теплові процеси, що протікають в умовах рівноваги всіх сил. Пізніше «динамікою» стали позначати дію. Наприклад, динамікою називається розділ механіки, що вивчає рух тіл.
Термодинаміка побудована за аксіоматичним принципом: фундаментальні закони природи приймаються як основні аксіоми, які називаються принципами термодинамі ки. Із них логічним шляхом виводяться всі наслідки, які характеризують різні термодинамічні системи і процеси, що в них відбуваються.
Для аналізу реальних процесів використовуються фізичні величини, що характеризують властивості тіл з макроскопічною кількістю речовини (температура, тиск, об'єм, теплоємність) і енергетичні ефекти, якими супроводжуються процеси (тепловий ефект, механічна робота, електрична робота). Механізм процесів і явищ не розглядається, тобто класична термодинаміка є феноменологічною наукою (грецьке ϕαινομενον – те, що з'являється). Феноменологічний підхід до досліджень використовується і в інших науках, але у термодинаміці він досягнув найбільшого розвитку і тому зазвичай називається термо динамічним методом дослідження, а класична термодинаміка – феноменологічною термодинамікою. Аналіз робочих процесів різних пристроїв перетворення енергії, тобто технічне застосування термодинаміки, складає важливу складову частину сучасної термодинаміки; цю частину, зважаючи на її велике значення, виділяють зазвичай у самостійний розділ і називають технічною термодинамікою. Сучасна технічна термодинаміка є основою теорії теплових двигунів, теплових машин і різних пристроїв та технологічних процесів, в яких як вихідна енергія, що зазнає перетворень у робочому процесі, використовується теплота; те ж саме основоположне значення має технічна термодинаміка для прямих перетворювачів енергії, в яких внутрішня енергія тіл чи енергія полів перетворюється на енергію електричного струму. Виникнення термодинаміки було викликане потребами практичної теплотехніки.
Значення термодинаміки полягає в тому, що вона встановлює принципи найбільш ефективного перетворення різних видів енергії і дає відповідь на першорядне з практичної точки зору питання про те, як організувати робочий процес, щоб к.к.д. був найбільшим. Термодинаміка дає можливість прогнозувати і оцінювати ефективність різних нових способів одержання корисної роботи, що має визначальне значення для вибору напрямків розвитку енергетики.
- Введение
- ЧАСТЬ 1. Восстановительная нетрадиционная энергетика
- Раздел 1. Общие сведения о возобновляемых нетрадиционных источниках энергии
- Раздел 2. Источники возобновляемой нетрадиционной энергетики
- Раздел 3. Перспективы развития возобновляемой нетрадиционной энергетики
- ЧАСТЬ 2. Энергосбережение
- Раздел 1. История и мировой опыт энергосбережения
- 1.1. Энергия и развитие человечества
- 1.2. Функциональные подходы к проблеме энергоэффективности (из мирового опыта)
- 1.3. Некоторые специфические элементы политики энергосбережения, общие для разных стран
- 1.4. Направления деятельности развитых стран в сфере энергоэффективности
- 1.5. Проблема устойчивого развития
- Раздел 2. Энергосбережение в Украине
- Раздел 3. От энергосбережения к энергоэффективности
- Раздел 1. История и мировой опыт энергосбережения
- ЧАСТЬ 3. Электроэнергетика и охрана окружающей среды
- Раздел 1. История охраны окружающей среды
- Раздел 2. Влияние теплоэнергетики на окружающую среду
- Раздел 3. Атомная энергетика и окружающая среда
- Раздел 4. Влияние гидроэнергетических объектов на окружающую среду
- 4.1. Особенности взаимодействия гидроэнергетических объектов с окружающей средой
- 4.2. Факторы влияния гидроэнергетических объектов на окружающую среду
- 4.3. Экологические требования по охране окружающей среды в период строительства гидроэнергетических объектов
- 4.4. Экологические требования по охране окружающей среды при эксплуатации гидроэнергетических объектов
- 4.5. Мониторинг окружающей среды
- Раздел 5. Возобновляемая нетрадиционная энергетика и охрана окружающей среды
- Раздел 6. Экологические аспекты воздействия электрических полей линий электропередач сверхвысокого напряжения на окружающую среду
- ЧАСТЬ 4. Организационно-правовые и экономические аспекты функционирования энергетики
- Раздел 1. Энергетическая безопасность
- Раздел 2. Законодательство, регулирующее отношения в ТЭК
- 2.1. Современная система энергетического законодательства Украины и основные направления ее совершенствования
- 2.2. Правовое регулирование экологических проблем в атомной энергетике
- 2.3. Правовое регулирование отношений в области энергетики в ЕС
- 2.4. Договор к Энергетической хартии
- 2.5. Международные организации в области энергетики
- Раздел 3. Мировой опыт организации рынков электрической энергии
- Раздел 4. Модели организации рынков электроэнергии
- Раздел 5. Развитие рыночного реформирования электроэнергетики Украины
- Раздел 6. Современные автоматизированные системы контроля и учета энергоресурсов (АСКУЭ)
- ЧАСТЬ 5. Основные тенденции развития мировой энергетики
- Заключение
- Перечень сокращений
- Использованная литература
- Сведения об авторах