Книга 5. Электроэнергетика и охрана окружающей среды. Функционирование энергетики в современном мире
2.8. Геотермальная энергетика
Выражение «геотермальная энергия» буквально означает, что это энергия тепла Земли («гео» – земля, «термальная» – тепловая). Основным источником этой энергии служит постоянный поток теплоты из раскаленных недр, направленный к поверхности Земли. Земная кора получает теплоту в результате трения ядра, радиоактивного распада элементов (подобно торию и урану), химических реакций. Постоянные времени этих процессов настолько велики относительно времени существования Земли, что невозможно оценить, увеличивается или уменьшается ее температура.
Запасы геотермальной энергии огромны. Геотермальная энергия в ряде стран (Венгрии, Исландии, Италии, Мексики, Новой Зеландии, России, США, Японии) широко используется для теплоснабжения, выработки электроэнергии. Так, в Исландии за счет геотермальной энергии обеспечивается 26,5% выработки электроэнергии.
В 2004 г. в мире суммарная мощность геотермальных электростанций составила около 9 млн. кВт, а геотермальных систем теплоснабжения – около 20 млн.кВт (тепловых). По прогнозам мощность геоТЭС может составить около 20 млн.кВт, а выработка электроэнергии – 120 млрд. кВт·ч.
Различают пять основных типов геотермальной энергии:
- нормальное поверхностное тепло Земли на глубине от нескольких десятков до сотен метров;
- гидротермальные системы, то есть резервуары горячей или теплой воды, в большинстве случаев самовыливной;
- парогидротермальные системы – месторождения пара и самовыливной пароводяной смеси;
- петрогеотермальные зоны или теплота сухих горных пород;
- магма (нагретые до 1300°С расплавленные горные породы).
Геотермальная энергия обеспечивает теплом столицу Исландии Рейкьявик. Уже в 1943 г. там были пробурены 32 скважины на глубину от 440 до 2400 м, по которым к поверхности поднимается вода с температурой от 60 до 130°С. Девять из этих буровых скважин действуют и по сей день.
Таблица 2.5 Сфера использования термальных вод
Температура термальной воды, °С |
Сфера использования |
37–50 |
Бальнеология |
50–70 |
Мелкомасштабная теплофикация, горячее водоснабжение, технологическое использование воды |
70–120 |
Крупномасштабная теплофикация (города и большие сельскохозяйственные объекты), комплексное многоцелевое использование вод по мере выработки теплового потенциала |
120–170 |
«Малая» электроэнергетика с использованием низкокипящих рабочих веществ типа фреона, аммиака и др. |
170–220 |
«Средняя» электроэнергетика с прямым использованием пароводяной смеси |
Больше 220 |
«Большая» электроэнергетика на природном сухом паре |
Среди месторождений глубинной теплоты Земли существуют термоаномальные зоны месторождений теплоты, которые имеют повышенный геотермальный градиент в водонасыщенных проникающих горных породах. Таким образом, проявлением геотермальной теплоты, имеющей практическое значение, являются запасы горячей воды и пара в подземных резервуарах на относительно небольших глубинах и гейзеры, которые выходят на поверхность.
Геотермальные воды классифицируют по температуре, кислотности, уровню минерализации, жесткости.
Основным показателем пригодности геотермальных источников для использования является их природная температура, согласно которой они подразделяются на низкотермальные воды с температурой 40–70°С; среднетермальные воды с температурой 70–100°С; высокотермальные воды и пар с температурой 100–150°С; парогидротермы и флюиды с температурой выше 150°С.
В США в Долине гейзеров расположено 19 геоТЭС общей мощностью 1300 МВт. Мощнейшая в мире геоТЭС (50 МВт) построена тоже в США – геоТЭС Хебер.
Пригодность термальных вод для той или иной сферы использования иллюстрируется табл. 2.5.
В качестве примера на рис. 2.29 приведена одна из схем использования геотермальных вод для отопления и горячего водоснабжения, при этом рассматриваются воды особой агрессивности, которые непосредственно использовать невозможно.
Геотермальные электростанции (геоТЭС) имеют ряд особенностей:
- постоянный излишек энергоресурсов, что обеспечивает использование полной установленной мощности оборудования геоТЭС;
- достаточно простой уровень автоматизации;
- последствия возможных аварий ограничиваются территорией станции;
- удельные капиталовложения и себестоимость электрической энергии в основном могут быть ниже, чем на электростанциях, использующих другие возобновляемые источники энергии.
ГеоТЭС можно разделить на три основных типа:
- станции, работающие на месторождениях сухого пара;
- станции с парообразователем, работающие на месторождениях горячей воды под давлением;
- станции с бинарным циклом, в которых геотермальная теплота передается вторичной жидкости (например фреону или изобутану) и происходит классический цикл Ренкина.
На рис. 2.30 приведена принципиальная схема станции третьего типа – с бинарным циклом работы.
Наибольший эффект имеет место при комбинированных схемах использования геотермальных источников как теплоносителя для подогрева воды и выработки электроэнергии на тепловых электростанциях, что обеспечивает значительную экономию органического топлива и увеличивает к.п.д. преобразования низкопотенциальной энергии. Такие комбинированные схемы позволяют использовать для выработки электроэнергии теплоносители с начальными температурами свыше 70–80°С.
Сегодня 58 стран используют тепло своих геотермальных ресурсов не только на производство электроэнергии, а непосредственно в виде тепла: для обогрева ванн и бассейнов – 42%; для отопления – 23%; для тепловых насосов – 12%; для обогрева теплиц – 9%; для подогрева воды в рыбных хозяйствах – 6%; в промышленности – 5%; для других целей – 2%; для сушения сельхозпродуктов, таяния снега и кондиционирования – 1%.
ГеоТЭС, построенные в США, Италии, России и других странах, по удельным капвложениям и стоимости электроэнергии могут конкурировать с современными ТЭС и АЭС.
В 2008 г. в мире установленная мощность электрогенерирующих геотермальных установок составила около 11 млн. кВт с выработкой около 55 млрд. кВт·ч.
По разным прогнозам мощность геотермальных станций к 2030 г. возрастет до 40–70 млн. кВт.
В Украине имеются значительные ресурсы геотермальной энергии. Месторождения геотермальных вод, пригодных к промышленному освоению в Украине, расположены в Закарпатской, Николаевской, Одесской, Херсонской областях и в АР Крым. Самыми перспективными для использования геотермальных ресурсов являются Карпатский регион и Крым. Менее значительный потенциал геотермальных вод имеется в Полтавской, Харьковской, Сумской и Черниговской областях. Годовой технический потенциал геотермальной энергии оценивается как эквивалентный 12 млн. т у.т., что обеспечивает перспективность развития геотермальной энергетики в стране.
2.7. Волновые электростанции
2.9. Использование энергии окружающей среды