Книга 5. Электроэнергетика и охрана окружающей среды. Функционирование энергетики в современном мире
Не менше ніж теплова і світлова, для природодослідників в XIX столітті становила інтерес і електродинамічна дія електричного струму, тобто способи прямого перетворення електричної енергії в роботу.
Раніше було показано, що соленоїд при проходженні через нього струму діє як магніт і притягується або відштовхується від полюсів іншого магніту. Легко припустити, що і два соленоїди, через які проходить струм, діятимуть один на одного подібно до двох магнітів. І, дійсно, таку взаємодію було встановлено і підтверджено дослідами Ампера в 1820 р.
Ампер довів існування взаємодії не тільки паралельних, але і довільно перехрещених провідників, через які проходить струм. При цьому вони чинять один на одного таку дію, що прагнуть стати паралельно один до одного, причому так, щоб струми в них мали однакові напрями.
Величина електродинамічної сили, з якою діють один на одного електричні провідники, залежить від їх взаємного положення, відстані між ними, а також від сили струму, який в них протікає. У загальному випадку ця сила пропорційна добутку обох струмів, що протікають в провідниках.
Ампер вивів теоретично свій основний електродинамічний закон тільки для двох елементів зі струмом, але не для замкнених контурів зі струмом. Першість в теоретичному визначенні електродинамічної сили струму в замкненому контурі належить Вільгельму Веберу.
Подальші досліди Вебера показали, що дія електродинамічної сили збільшується, якщо замість прямого провідника використовувати спіральне намотування. Цей ефект був використаний в конструкції першого приладу для вимірювання електродинамічної сили струму – електродинамометра. На мал. 7.11 показаний загальний вид електродинамометра для вимірювання слабких струмів, а на мал. 7.12 – загальний вид крутильного електродинамометра для вимірювання сильних струмів.
Вільгельм Едуард Вебер (1804–1891) – німецький фізик, член-кореспондент Берлінської академії наук. Його роботи присвячені електромагнетизму, акустиці, теплоті, молекулярній фізиці, земному магнетизму. У 1833 році побудував перший в Німеччині електромагнітний телеграф. Він розробив теорію електродинамічних явищ і встановив закон взаємодії рухомих зарядів (1848). У 1846 році вказав на зв'язок сили струму з густиною електричних зарядів і швидкістю їх впорядкованого переміщення. Винайшов ряд фізичних приладів, зокрема електродинамометр.
Мал. 7.11. Електродинамометр для вимірювання слабких струмів
Мал. 7.12. Крутильний електродинамометр для вимірювання сильних струмів
В ознаменування видатних заслуг Вебера його ім’ям була названа одиниця електромагнітного потоку.
Не заглиблюючись в подробиці конструкції електродинамометрів, необхідно відзначити, що вони були першими точними приладами для вимірювання електродинамічної сили переважно змінного струму, який одержав пізніше значно ширше розповсюдження, про що буде сказано нижче.
- Введение
- ЧАСТЬ 1. Восстановительная нетрадиционная энергетика
- Раздел 1. Общие сведения о возобновляемых нетрадиционных источниках энергии
- Раздел 2. Источники возобновляемой нетрадиционной энергетики
- Раздел 3. Перспективы развития возобновляемой нетрадиционной энергетики
- ЧАСТЬ 2. Энергосбережение
- Раздел 1. История и мировой опыт энергосбережения
- 1.1. Энергия и развитие человечества
- 1.2. Функциональные подходы к проблеме энергоэффективности (из мирового опыта)
- 1.3. Некоторые специфические элементы политики энергосбережения, общие для разных стран
- 1.4. Направления деятельности развитых стран в сфере энергоэффективности
- 1.5. Проблема устойчивого развития
- Раздел 2. Энергосбережение в Украине
- Раздел 3. От энергосбережения к энергоэффективности
- Раздел 1. История и мировой опыт энергосбережения
- ЧАСТЬ 3. Электроэнергетика и охрана окружающей среды
- Раздел 1. История охраны окружающей среды
- Раздел 2. Влияние теплоэнергетики на окружающую среду
- Раздел 3. Атомная энергетика и окружающая среда
- Раздел 4. Влияние гидроэнергетических объектов на окружающую среду
- 4.1. Особенности взаимодействия гидроэнергетических объектов с окружающей средой
- 4.2. Факторы влияния гидроэнергетических объектов на окружающую среду
- 4.3. Экологические требования по охране окружающей среды в период строительства гидроэнергетических объектов
- 4.4. Экологические требования по охране окружающей среды при эксплуатации гидроэнергетических объектов
- 4.5. Мониторинг окружающей среды
- Раздел 5. Возобновляемая нетрадиционная энергетика и охрана окружающей среды
- Раздел 6. Экологические аспекты воздействия электрических полей линий электропередач сверхвысокого напряжения на окружающую среду
- ЧАСТЬ 4. Организационно-правовые и экономические аспекты функционирования энергетики
- Раздел 1. Энергетическая безопасность
- Раздел 2. Законодательство, регулирующее отношения в ТЭК
- 2.1. Современная система энергетического законодательства Украины и основные направления ее совершенствования
- 2.2. Правовое регулирование экологических проблем в атомной энергетике
- 2.3. Правовое регулирование отношений в области энергетики в ЕС
- 2.4. Договор к Энергетической хартии
- 2.5. Международные организации в области энергетики
- Раздел 3. Мировой опыт организации рынков электрической энергии
- Раздел 4. Модели организации рынков электроэнергии
- Раздел 5. Развитие рыночного реформирования электроэнергетики Украины
- Раздел 6. Современные автоматизированные системы контроля и учета энергоресурсов (АСКУЭ)
- ЧАСТЬ 5. Основные тенденции развития мировой энергетики
- Заключение
- Перечень сокращений
- Использованная литература
- Сведения об авторах