Бог проявил щедрость,
когда подарил миру такого человека...

Светлане Плачковой посвящается

Издание посвящается жене, другу и соратнику, автору идеи, инициатору и организатору написания этих книг Светлане Григорьевне Плачковой, что явилось её последним вкладом в свою любимую отрасль – энергетику.

Книга 5. Электроэнергетика и охрана окружающей среды. Функционирование энергетики в современном мире

Раздел 2. Источники возобновляемой нетрадиционной энергетики

Як уже зазначалося, перший і другий закони термодинаміки були сформульовані як принципи неможливості двигунів першого і другого роду.

Третій закон термодинаміки сформульований як принцип неможливості досягнення абсолютного нуля температур.

Розглядаючи максимально можливі теплоту і роботу хімічних реакцій поблизу абсолютного нуля температури, німецький фізик і фізикохімік В. Нернст (1864–1941) відмітив, що для конденсованих систем при T>0 похідні теплоти і роботи по температурі стають рівними одна одній і також прагнуть до нуля. Базуючись на цьому, він своєю теоремою (теорема Нернста) встановив, що поблизу абсолютного нуля температури значення всіх теплоємкостей стає рівним нулю і ентропії S всіх речовин, що знаходяться у рівноважному стані, стають незмінними і рівними між собою. Цей висновок, званий тепловим законом Нернста, надалі підтверджений практикою розрахунків і експериментальними даними визначення теплоємкостей. Надалі М. Планк показав, що абсолютні значення ентропії при T>0 для різних речовин не тільки рівні одне одному, але й можуть бути прийняті рівними нулю, тобто для всіх речовин при T>0 маємо S0=0.

З вищезгаданого міркування випливає, що ні шляхом відведення тепла (тобто охолоджуванням тіла), ні шляхом здійснення якої-небудь роботи поблизу абсолютного нуля знизити температуру тіла неможливо. Цей висновок формулюється як вельми важливий закон: абсолютний нуль температури недосяжний. Досвід показує, що, кажучи словами самого Нернста, «відповідно до результатів квантової теорії для кожного твердого тіла існує в околиці абсолютного нуля деякий температурний інтервал, в якому саме поняття температури практично втрачає сенс», або, простіше кажучи, в цьому температурному інтервалі властивості тіла (об'єм, теплове розширення, стисливість і т. д.) не залежать від температури. Це поле термічної нечутливості різне у різних тіл; в алмаза, згідно з Нернстом, воно тягнеться не менше ніж на 40 градусів від абсолютного нуля.

  • Предыдущая:
    Раздел 1. Общие сведения о возобновляемых нетрадиционных источниках энергии
  • Читать далее:
    2.1. Солнечная энергетика
  •